
Development/finPOWER Connect/Version 4/finPOWER Connect Programming Guide

(Public).docx

finPOWER Connect 4

Programming Guide

Version 4.01

15 August 2023

Page 2 of 57

Contents
Disclaimer .. 5

Version History .. 6

Introduction .. 7

Best Practices ... 8

Top 4 Practices ... 8

Other Essential Practices ... 8

Code Quality .. 8

Secure Coding Practices... 9

Testing .. 10

Programming Languages .. 11

Option Strict ... 12

Option Explicit ... 13

Data Types ... 14

Integers .. 14

Strings .. 14

Uninitialised Strings ... 14

Blank Strings ... 14

Comparing Strings ... 15

Other String Guidelines ... 15

Dates .. 15

Properties vs Methods .. 17

General ... 17

Checking Return Values ... 18

Resolved Properties .. 18

Functions without Exceptions .. 19

Other Coding Styles ... 21

AndAlso and OrElse ... 21

Converting to Strings .. 21

Optimising Code .. 22

Use Global Collections ... 22

Caching Values ... 22

Pass Objects, Don't Reload Them .. 23

Tag Property ... 25

Private Classes and Collections .. 26

Private Classes ... 26

Arrays and Collections ... 26

Database .. 28

Database Structure ... 28

Transactions .. 29

ISSelectQueryBuilder .. 31

Simple Case .. 31

Limit Results ... 31

Page 3 of 57

Join Tables .. 31

Sub-Query in Fields .. 32

Where Clause .. 32

Where Clauses with Wildcards ... 32

Where Clause with Sub-Query ... 33

IDataReader .. 33

Reading the results of a Select Query ... 33

Checking for Null values ... 34

Common Objects ... 35

ISList .. 35

ISKeyValueList ... 35

Parameter Sets and User Defined Indexes .. 37

Overview ... 37

ISKeyValueList vs ISParameters ... 37

finPOWER Connect versions 1.06.06 and Above ... 38

Scripts ... 39

New Scripts.. 39

Configuration ... 39

Important Information ... 39

VBA and VB6 .. 41

VBScript ... 42

Appendix A – Miscellaneous .. 43

Attributes .. 43

Obsolete ... 43

EditorBrowsable ... 43

ISMemberFlags .. 43

Appendix B – Utility Functions ... 44

Date Utilities (ISRuntime) .. 44

Time Zone Utilities (ISSupport) .. 44

File Utilities (ISRuntime) .. 45

HTML Utilities (ISRuntime) ... 46

Number Utilities (ISRuntime) ... 47

Text Utilities (ISRuntime) .. 47

Time Zone Functions (ISRuntime) ... 48

Validation (ISRuntime) .. 48

Appendix C - IDE Configuration ... 49

Project Settings .. 49

Editor Settings ... 50

Appendix D - Language Features ... 51

Function Overloading .. 51

Generics .. 51

Optional Parameters ... 51

Late Binding ... 51

Page 4 of 57

ByRef Parameters ... 51

Interfaces .. 51

Nullable Types .. 51

Appendix E - Code Layout ... 52

Tabs and Indentation .. 52

Remarks .. 52

Declare Variables and other Members Alphabetically ... 53

Other Spacing .. 53

Class Spacing .. 53

Function Spacing ... 53

Within a Function ... 53

Within a Select Case ... 54

Appendix F - Naming Conventions ... 55

Classes .. 55

Functions ... 55

Function Parameters ... 55

Module Variables .. 55

Private Variables ... 56

Enums ... 56

Underscores ... 56

Appendix G – Other, Internal, Coding Styles ... 57

If Blocks .. 57

Debug.Assert and Stop .. 57

Page 5 of 57

Disclaimer
All information, including code examples, contained in this document are provided "as is"

without warranty of any kind, and Intersoft accepts no liability for any decisions made on the

basis of this information.

This document contains information that may be subject to change at any stage.

It is your responsibility to make sure the information in this document is fit for purpose and

you should seek independent professional advice where necessary.

Copyright Intersoft Systems Ltd, 2023.

Page 6 of 57

Version History
Date Version Name Changes

21/07/2015 2.00 PH Created.

29/07/2015 2.01 PH Updated to details finBLShared and ScriptInfoShared properties.

11/02/2016 3.00 PH Updated for finPOWER Connect version 3.

13/06/2017 3.01 JR Added notes regarding IsDBNull.

18/10/2018 3.02 JR Various, including Use Global Collections

03/01/2019 3.03 PH Various updates.

31/01/2020 3.04 PH Best Practices section added.

1/07/2021 3.05 JR Where Clauses with Wildcards

15/08/2023 4.01 MJ Updated Best Practices section including Secure Coding

Page 7 of 57

Introduction
This document describes recommended programming practices and also styles and

conventions to use when programming for the finPOWER Connect business layer.

This document deals mainly with the programming of Scripts within finPOWER Connect but

since use of the finPOWER Connect business layer is not limited to Scripts, the majority of the

content also applies to external applications using the business layer.

Many of these practices are used internally by the Intersoft development team and have been

extended to built-in Scripts, e.g., Summary Pages and, to some degree, VBA templates.

Others may not apply to external applications wishing to use the finPOWER Connect business

layer.

NOTE: Programming practices, styles and conventions change and are refined over time;

therefore, some older code may not strictly adhere to these guidelines and this document will

constantly evolve over time.

Page 8 of 57

Best Practices
This section outlines coding practices that any professional developer using the finPOWER

Connect API should adhere to.

WARNING: Failure to adhere to best practices (including code quality and testing) may result

in stability issues, can seriously impact performance and can lead to termination of your Third

Party Developer Licence Agreement.

These issues impact the end-user's perception of finPOWER Connect.

They are unlikely to know whether an issue is due to a badly

implemented customisation or is the fault of finPOWER Connect itself.

Top 4 Practices
Below are the four MOST IMPORTANT PRACTICES:

• ALWAYS check return values (see the Checking Return Values section). Not doing so:

o Leads to unpredictable results.

o Errors may go unnoticed or may be meaningless or misleading.

o Trying to isolate an issue can be very difficult and time-consuming.

• NEVER perform long-running code or call external services within a Database Transaction.

• NEVER use message boxes or any other User Interface components in Scripts that do not

expose the User Interface layer; and never within a Database Transaction.

• ALWAYS use Global Collections rather than loading objects (where possible).

Other Essential Practices
The following practices should also be observed:

• Remark out debugging code (e.g., finBL.DebugPrint) before going into production since it

can impact performance.

• Cache values rather than calling a method multiple times.

• Test against realistic data (e.g., a copy of production data) to ensure scalability.

• Use the ISSelectQueryBuilder object when building database queries rather than in-lining

SQL Strings.

• Comment your code to assist yourself and other developers.

o Remember, it is likely that you will need to revisit and maintain your code in the future.

• Use Enum values

o E.g., isefinAccountStatus.Open and NOT the numeric (1) or text values ("Open").

Code Quality
Code quality can dictate how well your code runs and also how easy it is for others to support.

The following (not entirely fictional) sample shows what NOT to do. In this case, we are

looking at a Workflow Type Script:

Public Function Main(workflow As finWorkflow,

 eventId As String,

 ByRef eventHandled As Boolean,

 workflowItem As finWorkflowItem,

 otherParameters As ISKeyValueList) As Boolean

 Dim Account As finAccount

Page 9 of 57

 ' Get out if Workflow is already closed

 If workflow.Status <> 1 Then Exit Function

 ' Assume Success

 Main = True

 ' Load Workflow's Account

 Account = finBL.CreateAccount()

 Account.Load(workflow.AccountId)

 ' Handle Events

 Select Case eventId

 Case "AfterInitialise"

 Case "CanActionItem"

 ' Check that an item can be actioned

 End Select

End Function

• If workflow.Status <> 1 Then Exit Function

1. Not using Enums. Should read:

If workflow.Status <> isefinAccountStatus.Open

2. Exiting function without returning a specific value. All Script Main functions expect a True

or False result. If you absolutely must shortcut the function like this, make sure the

Script indicates that it has not errored:

If workflow.Status <> isefinAccountStatus.Open Then Return True

• Account.Load(workflow.AccountId)

1. Not checking the return value. Should read:

Main = Account.Load(workflow.AccountId)

2. Outside of the Select Case and therefore called regardless of the event:

 NOTE: This is a MASSIVE PERFORMANCE ISSUE since the Account is then loaded

every time the "CanActionItem" event is called. This happens for each and every item

in the current Workflow Group.

3. No need to actually load the Account in this way since the Workflow has a shortcut

(which is lazy-loaded):

Account = workflow.Account

Secure Coding Practices
Intersoft strongly recommends that script authors apply Secure Coding practices and principles

whenever writing scripts for finPOWER Connect. More information can be found at the Open

Worldwide Application Security Project (OWASP) web site https://owasp.org/.

For example:

• Ensure servers, frameworks and system components are running the latest approved

version.

• Remove test code or any functionality not intended for production, prior to deployment.

The following additional resources are available at the OWASP web site:

• OWASP Secure Coding Check List:

o https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

• OWASP Developer Guide (draft):

https://owasp.org/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

Page 10 of 57

o https://owasp.org/www-project-developer-guide/draft/

• OWASP Code Review Guide:

o https://owasp.org/www-project-code-review-guide/

For more information regarding OWASP compliance within finPOWER Connect, please request a

copy of the finPOWER Connect OWASP Check List Compliance Guide.

Testing
• ALWAYS test against realistic data (e.g., a copy of production data) to ensure scalability and

compatibility.

• ALWAYS test against the database provider you are going to use, e.g., if production uses

MS SQL Server, do not rely on testing only against an MS Access database.

• ALWAYS test in the version of finPOWER Connect (or Web Services or finPOWER Connect

Cloud) that is being used in production.

• Monitor database access (e.g., using the Debug window) to avoid unnecessary database

calls being made.

When implementing HTML Widgets and Portals:

• Test against the web browsers and platforms (e.g., Windows, iPhones) that your end-users

use.

https://owasp.org/www-project-developer-guide/draft/
https://owasp.org/www-project-code-review-guide/

Page 11 of 57

Programming Languages
finPOWER Connect is written entirely in VB.NET.

Sample Scripts, HTML Widgets, Documents etc are also written in VB.NET.

Although C# is an option, this is not discussed in this document and not directly supported by

Intersoft Systems.

If you are considering using C#, please review the following points:

• All documentation, programming guides and blogs are written with VB in mind and the

sample code supplied in them is written in VB.

• All sample Scripts, HTML Widgets, Documents etc are provided as VB code.

• The .NET Framework supports C# up to version 7.3. Currently C# is at version 11.

o For more information see https://learn.microsoft.com/en-us/dotnet/csharp/language-

reference/configure-language-version.

• Some functionality may be harder to use or even not work.

o Decision Card Rules only support VB.

• Because something works in VB, that doesn't mean it will work, or work as well, in C#.

• If a sample Script, Document, HTML Widget etc (all written in VB) changes in a future

version it makes it much harder to update a script that has already been converted to C#.

o This is a major drawback.

• Converting everything to C# is a huge and costly job that would take a long time.

• The .NET Framework is the same, regardless of the language used.

o The major learning curve is the finPOWER Connect Business Layer

o Therefore, as we only supply VB samples, and associated reference materials are VB

centric it may make it difficult for a programmer new to the software to pick up the

Business Layer and start scripting in C#.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

Page 12 of 57

Option Strict
Option Strict requires that all declared variables have a data type specified.

Normally, setting one variable to another variable of a different data type indicates a

programming error.

However, Visual Basic allows conversions of many data types to other data types.

• Data loss can occur when the value of one data type is converted to a data type with less

precision or smaller capacity.

• A run-time error occurs if such a narrowing conversion fails.

• Option Strict ensures compile-time notification of these narrowing conversions so they

can be avoided.

• The default is Off, so you must turn it on to use.

To turn on, include the following at the top of your Script code (this is not necessary if you are

not working with a Script and have configured Project Settings correctly):

Option Strict On

NOTE: Option Strict should be used as the default for all projects. The only places it cannot

be used is where late binding is required, e.g., when dealing with Microsoft Word objects.

Page 13 of 57

Option Explicit
Option Explicit requires that all variables are declared.

To turn on, include the following at the top of your Script code (this is not necessary if you are

not working with a Script and have configured Project Settings correctly):

Option Explicit On

NOTE: Option Explicit should ALWAYS be used, particularly in finPOWER Connect Scripts.

Page 14 of 57

Data Types
This section outlines some of the common data types used in VB.NET.

Integers
Integers in .NET are the equivalent of Long Integers in VBA and VB6.

They can represent values between -2,147,483,648 to 2,147,483,647.

Intersoft rarely use the Long data type, except where a function or its parameters require this,

e.g., the VB.NET DateDiff function which returns a Long value.

Strings

Uninitialised Strings

Strings are objects hence, by default, a String value in VB.NET has a value of Nothing. This is

NOT the same as a blank String.

Using a method on a String with a value of Nothing will result in a runtime exception, e.g., if

strTemp is Nothing then the following will all error:

n = strTemp.Length()

If strTemp.Equals("Value") Then

If strTemp.StartsWith("Value") Then

For safety reasons, i.e., to avoid runtime exceptions, Intersoft typically use VB.NET

functionality which will not error if the String has a value of Nothing, e.g.:

n = Len(strTemp)

If StrComp(strTemp, "Value") = 0 Then

If Left(strTemp, 5) = "Value" Then

Blank Strings

Historically, to test for a blank String, Intersoft have always used the Len function, e.g.:

If Len(strTemp) = 0 Then

Rather than testing against a blank String, e.g.:

If strTemp = "" Then

The preferred method from version 4 is to use the .NET String.IsNullOrEmpty function, e.g.:

If String.IsNullOrEmpty(strTemp) Then

NOTE: In early versions of BASIC and also VB6, VBA and VBScript, there may have been a

small performance gain in using Len rather than comparing the variable to a blank String.

In VB.NET, there may be no such gain but it is a convention Intersoft have kept using and it

allows our code to be consistent across VBScript, VB6, VBA and VB.NET.

Page 15 of 57

Comparing Strings

Depending on what is being compared, Intersoft uses different ways of comparing Strings.

For equality and non-equality, use '=' and '<>', e.g.:

If strTemp = "Hello" Then

If strTemp <> "Hello" Then

For a case-insensitive, culture invariant comparison, use the StrComp function, e.g.:

If StrComp(strTemp, "value", CompareMethod.Text) = 0 Then ' Equals

If StrComp(strTemp, "value", CompareMethod.Text) <> 0 Then ' Not Equals

The StrComp function can also be used for less than or greater comparisons (often useful when

sorting values) since it always returns either 0, 1 or -1 (if you do not want a case-insensitive

compare then omit the CompareMethod parameter), e.g.:

If StrComp(strTemp, "value", CompareMethod.Text) = -1 Then ' strTemp is less than "value"

If StrComp(strTemp, "value", CompareMethod.Text) = 1 Then ' strTemp is greater than "value"

The preferred approach from version 4 is to use the .NET String.Compare method, e.g.:

If String.Compare(strTemp, "value", True) = -1 Then ' strTemp is less than "value"

If String.Compare(strTemp, "value", True) = 1 Then ' strTemp is greater than "value"

-

When using a String value in a Select Case, the UCase function is often used to make the

code case-insensitive, e.g.:

Select Case UCase(Key)

 Case "A"

 Case "B"

 Case Else

End Select

Other String Guidelines

Typically, Instr and InstrRev are used to find the index of one String within another, often

with the CompareMethod.Text parameter to perform a case-insensitive search, e.g.:

i = InStr(strTemp, "smith", CompareMethod.Text)

Use the finBL ReplaceText function to replace one String within another, optionally performing

a case-insensitive search, e.g.:

strTemp = finBL.RunTime.TextUtilities.ReplaceText(strTemp, "x", "y", , , CompareMethod.TextTrue)

WARNING: The VB.NET Replace function has a bug which means that it may return a String

value of Nothing rather than a blank String.

Dates
Unlike VBA and VB6, .NET dates are not stored as numbers, therefore you cannot perform

calculations such as:

Page 16 of 57

Date2 = Now.Date + 2

You should use the Date methods, e.g.:

Date2 = Now.Date.AddDays(2)

NOTE: A common mistake is to forget to assign the results of the date method and just

assume that AddDays(2) will update the variable itself, e.g.:

 tempDate.AddDays(2)

Is incorrect, instead you must use:

 tempDate = tempDate.AddDays(2)

The difference between dates can be calculated using the DateDiff function. If can also be

calculated by subtracting dates which returns a TimeSpan object.

This example uses the DateDiff function in conjunction with the DateInterval Enum:

TotalMonths = DateDiff(DateInterval.Month, Date1, Date2)

Uninitialised dates have a value of Nothing. This is actually still a date (1/1/0001).

Setting a date variable to Nothing and comparing it to Nothing is valid, although when

comparing, you should not use the Is operator, use Equals, e.g.:

If Date1 = Nothing Then

Page 17 of 57

Properties vs Methods
This section contains guidelines about using Properties and Methods.

NOTE: Due to historical reasons, some parts of the finPOWER Connect business layer may not

adhere to these standards. Occasionally, Intersoft will deprecate certain properties and add

methods to make code clearer and to comply with these guidelines.

General
Properties always return a value and almost NEVER affect the object in any other way.

• Properties generally just return a value without any form of processing.

o Occasionally, the property may do a small amount of processing, e.g., string

concatenation, simple calculations etc.

• Properties will not generally have parameters.

o Exceptions are for indexed properties, e.g., finAccount.User(0)

• Property Sets almost always validate the value passed in, e.g., to restrict the length of a

String, trim trailing spaces, enforce maximum and minimum values and, importantly,

ensure currency values are correctly rounded.

Values are validate using the Validation functions within the ISRuntime class. These are

described in the Appendix B.

Methods often return a value and may affect the object.

• Method names generally begin with verb, e.g.:

o Save

o Load

o Execute

o Get

o Exists

• Some methods work a little like properties, e.g., the finAccount.GetBalance method

retrieves an Account's balance.

o This is a method because:

 It can fail (Balance may be retrieved from the database) and therefore returns True or

False with ByRef parameters to return the Balance and other values.

 It takes parameters, e.g., DateAsAt.

 It contains a reasonable amount of processing rather than just returning already

loaded values and is therefore slower.

IMPORTANT: Never call a method multiple times unless necessary, e.g., unnecessarily

retrieving an Account's Balance inside a loop.

Always cache the return value of a method call in a variable if you need to use it multiple

times, e.g., to display in several places in a Summary Page.

Page 18 of 57

Checking Return Values
Many methods return either True or False depending on whether they have succeeded.

ALWAYS check this return value and act accordingly.

Generally, if a method has returned False, an error message will have been set (see the

section Functions without Exceptions). Exceptions to this include mainly 'checking' type

functions such as:

• Exists

• ExistsPk

• HasValues

Certain properties, generally collections are loaded on demand, e.g.,

finAccount.Transactions.

Accessing this collection directly is fine in some situations, e.g., to display a list of transactions

in a Summary Page. However, for situations that rely on the Transactions collection having

loaded correctly, e.g., a report, the property's corresponding 'Load' method should first be

called and the return value checked, e.g.:

If Account.TransactionsLoad() Then

 ' OK to access Account.Transactions

Else

 ' Error loading Transactions

End If

Resolved Properties
Many properties have a suffix 'Resolved'.

These properties are always Read-Only and have a corresponding property without the

'Resolved' suffix.

A 'Resolved' property may do the following:

• Return a value from a different object if the corresponding property without a 'Resolved'

suffix does not have a value, e.g.:

o finSettingsUser.DocumentFolderResolved

 If the Document Folder is not defined for a user, this will return the Document Folder

defined under Global Settings (the finSettings.DocumentFolder property).

• Resolve tags in the corresponding property without a 'Resolved' suffix, e.g.:

o If finSettingsUser.DocumentFolder is set to "[DbFolder]\Documents"

 The finSettingsUser.DocumentFolderResolved property might return

"n:\data\Documents".

• This assumes that the current Access database is located at "n:\data".

Page 19 of 57

Functions without Exceptions
Very few places within the finPOWER Connect business layer ever throw exceptions.

Instead, most functions return a Boolean value to indicate whether they have succeeded or

failed. This has the following advantages:

• Throwing exceptions can be slow.

• Having to trap exceptions through various levels of function calls can be complicated.

• Our own error handling functionality (the ISError class) allows us to record multiple levels

of errors (similar to the call stack) that makes tracing errors easy(ish) but also generates an

error that is appropriate to display to the user, e.g.:

Failed to save Client.

 Failed to validate Contact Methods.

 Contact Method 2 does not have a value.

Coding in this way leads to a very particular coding style and structure. This same style is used

within our internal code and within Scripts and VBA templates.

A simple example is:

Private Function Account_AddPaymentArrangement(accountPk As Integer,

 arrangementDate As Date,

 arrangementByWhom As String,

 arrangementType As String,

 arrangementReason As String,

 paymentCycle As String,

 Optional paymentNextDate As Date = Nothing,

 Optional paymentOverride As Decimal = 0) As Boolean

Dim AccountPayArrangementAdd As finAccountPayArrangementAdd

Dim Success As Boolean

' Assume success

Success = True

' Initialise

AccountPayArrangementAdd = finBL.CreateAccountPayArrangementAdd()

' Create Payment Arrangement

With AccountPayArrangementAdd

 ' Load Account

 Success = .AccountLoadPk(accountPk)

 ' Clear existing Promises

 If Success Then

 Success = .PromisesClear()

 End If

 If Success Then

 ' Update Properties

 .ArrangementByWhom = arrangementByWhom

 .ArrangementDate = arrangementDate

 .ArrangementReason = arrangementReason

 .ArrangementType = arrangementType

 .OverdueHold = True

 .PrintAdvice = False

 ' Update Calculation

 With .Calculation

 If Len(paymentCycle) <> 0 Then .PaymentCycle = paymentCycle

 If paymentNextDate <> Nothing Then .PaymentNextDate = paymentNextDate

 If paymentOverride <> 0 Then .PaymentRegularOverride = paymentOverride

 End With

 ' Calculate

 Success = .Calculate()

 End If

 ' Commit Payment Arrangement

 If Success Then

 Success = .ExecuteCommit()

 End If

Page 20 of 57

End With

' Error
If Not Success Then
 finBL.Error.ErrorExtend("Failed to add Payment Arrangement.")
End If

' Return Success

Return Success

End Function

Note the following from the above example since almost all built-in Scripts and other

functionality follows this structure:

• Most functions contain a line at the beginning where it is assumed that everything is going to

succeed:

' Assume Success

Success = True

• And a block at the end where the error is extended if things were not successful:

' Error

If Not Success Then

 finBL.Error.ErrorExtend("Failed to add Payment Arrangement.")

End If

• In between, the main functionality takes place, e.g., loading and updating information etc.

Between each of these steps a check is made to the success variable (Success in this case)

and it is assigned a new value if necessary and an error begun (again, if necessary), e.g.:

' Clear existing Promises

If Success Then

 Success = .PromisesClear()

End If

• Functions such as finAccountPayArrangement.PromisesClear return a Boolean value and

already begin the error message hence nothing else is required other than 'extending' it at

the end of the function.

WARNING: The disadvantage of not throwing exceptions is that all code using the business

layer MUST check the Boolean return values and only execute the next block of code if the

previous function succeeded.

If this is not done correctly, unpredictable results and error messages may result and

debugging code will become difficult.

Page 21 of 57

Other Coding Styles

AndAlso and OrElse
ALWAYS use AndAlso and OrElse instead of And and Or. They shortcut expression evaluation

and make for more optimised and robust code, e.g.:

Dim i As Integer

If i <> 0 And 100/i < 20 Then

Would cause an error since you are trying to divide 100 by zero. This is because using And still

evaluates 100/i, even if i is zero.

Using AndAlso does not cause an error and is also more efficient, e.g.:

Dim i As Integer

If i <> 0 AndAlso 100/i < 20 Then

NOTE: AndAlso and OrElse 'shortcut' any following expressions and were introduced with

VB.NET as alternatives to changing the traditional And and Or operators which Microsoft felt

might break existing VB6 and VBA code being converted to VB.NET.

The only places where Intersoft use And and Or are as bitwise operators (such as 'flagged'

enums), e.g.;

MsgBox("Hello", MsgBoxStyle.Information Or MsgBoxStyle.YesNo)

If (i And 128) = 128 Then

Converting to Strings
On the odd occasion where it is necessary to view an object as a String, the ToString method

on the class is overridden. Certain 'builder' type objects such as the HTML Summary Page

builder objects do this.

Generally, where formatting is not an issue, the VB.NET CStr function is used to convert a

value type to a String rather than using the type's ToString method, e.g.:

Dim i As Integer

Dim strTemp As String

strTemp = CStr(i)

Where formatting is an issue (e.g., dates and currency values), the business layer contains

helper functionality (ISSupport or ISRuntime), e.g.:

strTemp = finBL.FormatDateLong(DateOfBirth)

strTemp = finBL.FormatCurrency(Amount)

Page 22 of 57

Optimising Code

Use Global Collections
finPOWER Connect preloads most Admin files into "Global Collections" held in memory.

Wherever possible use a Global Collection rather than loading information from the database.

The following code loads an Element to use:

Dim Element As finElement

' Create Element
Element = finBL.CreateElement()

' Load Element
Success = Element.Load("FEE")

If Success Then
 If Element.Active Then
 ' Do some work
 End If
End If

Note, the highlighted line will hit the database

Instead use the "Elements" Global Collection:

If finBL.Elements("FEE").Active Then
 ' Do some work
End If

Caching Values
Certain operations may be expensive, e.g., slow or use a lot of processing power or database

querying.

Caching values in a variable is recommended when using expensive calls, rather than

accessing them multiple times.

Consider the following code:

Dim Account As finAccount

Dim Message As String

' Assume Success

Main = True

' Load Account

Account = finBL.CreateAccount()

Main = Account.Load("L10000")

' Create Message

If Main Then

 If Account.Calculation.Schedule.TotalPayments() = 0 Then

 Message = "No payments made yet."

 Else

 Message = String.Format("Payments made {0}.", _

 finBL.FormatCurrency(Account.Calculation.Schedule.TotalPayments(), True))

 End If

End If

Getting the Total Payments may be slow. This code can therefore be optimised by caching this

in a local variable, e.g.:

Dim Account As finAccount

Dim Message As String

Dim TotalPayments As Decimal

' Assume Success

Page 23 of 57

Main = True

' Load Account

Account = finBL.CreateAccount()

Main = Account.Load("L10000")

' Create Message

If Main Then

 TotalPayments = Account.Calculation.Schedule.TotalPayments()

 If TotalPayments = 0 Then

 Message = "No payments made yet."

 Else

 Message = String.Format("Payments made {0}.", finBL.FormatCurrency(TotalPayments, True))

 End If

End If

NOTE: The fact that the TotalPayments() member is a Method indicates that it probably does

some processing rather than just returning an already cached value.

Other places where you should cache values include:

• Loops, e.g.:

o Don't recalculate values or concatenate Strings unnecessarily within loops. Calculate the

value before entering the loop.

o Don't call functions within loops unnecessarily. If the function's return value will not vary

with each iteration of the loop, call the function before entering the loop and store the

result in a variable.

Pass Objects, Don't Reload Them
Loading an object takes time, therefore objects should be passed between functions in

preference to reloading them.

Consider the following code:

Private Sub LoadAccount(accountId As String)

 Dim Account As finAccount

 Dim ClientList As String

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Load Account

 Account = finBL.CreateAccount()

 Ok = Account.Load("L10000")

 ' Get Names of all Account Clients

 If Ok Then

 ClientList = GetClientList(Account.AccountId)

 End If

End Sub

Private Function GetClientList(accountId As String) As String

 Dim Account As finAccount

 Dim AccountClient As finAccountClient

 Dim ClientList As String

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Load Account

 Account = finBL.CreateAccount()

 Ok = Account.Load(accountId)

Page 24 of 57

 ' Get Names of all Account Clients

 If Ok Then

 For Each AccountClient In Account.Clients

 If Len(ClientList) <> 0 Then ClientList &= vbNewLine

 ClientList &= AccountClient.ClientName

 Next

 End If

 Return ClientList

End Function

Rather than passing the Account Id and reloading the Account, it is optimal to pass the

Account object, e.g.:

Private Sub LoadAccount(accountId As String)

 Dim Account As finAccount

 Dim ClientList As String

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Load Account

 Account = finBL.CreateAccount()

 Ok = Account.Load("L10000")

 ' Get Names of all Account Clients

 ClientList = GetClientList(Account)

End Sub

Private Function GetClientList(account As finAccount) As String

 Dim AccountClient As finAccountClient

 Dim ClientList As String

 Dim Ok As Boolean

 ' Get Names of all Account Clients

 For Each AccountClient In Account.Clients

 If Len(ClientList) <> 0 Then ClientList &= vbNewLine

 ClientList &= AccountClient.ClientName

 Next

 Return ClientList

End Function

Exceptions to this rule may include:

• Where a global or module variable already exists holding the object (e.g., a finPOWER

Connect Summary Page Script). In these cases there is no need to pass the object around

at all since it will be available to all functions.

• Where a function must have the latest version of the object as stored on the database, e.g.,

to ensure it has not been changed by the User or to ensure it contains changes made

elsewhere.

WARNING: Using global and module variables for performance reasons can make for

confusing code and should be used only when necessary.

Page 25 of 57

Tag Property
Many objects have a Tag property, e.g., finAccount, finAccountCalc,

finAccountCalcInterest.

This can be used by Scripts or other processes to store any object or value against the object.

The Tag property:

• Is never saved to the database.

• Can be used to cache information between consecutive calls to a Script (e.g., to optimise

initialisation of values or to hold intermediate values).

By default, the Tag property will be Nothing.

Page 26 of 57

Private Classes and Collections

Private Classes
Private classes can be defined within another class or defined and used within Scripts.

The following is an example of a private class as defined within a finPOWER Connect Script

(the New constructor is optional and this example intentionally omits City for use in the

following section's examples):

Public Function Main(parameters As ISKeyValueList) As Boolean

 Dim x As TestClass

 ' Assume Success

 Main = True

 ' Create TestClass Instance

 x = New TestClass("John Smith", #9/4/1971#)

End Function

Private Class TestClass

 Public Name As String

 Public DateOfBirth As Date

 Public City As String

 Public Sub New(name As String, dateOfBirth As Date)

 Me.Name = name

 Me.Age = age

 End Sub

 Public ReadOnly Property Age As Integer

 Get

 finBL.Runtime.DateUtilities.AgeInYears(Me.DateOfBirth)

 End Get

 End Property

End Class

Arrays and Collections
Private classes can be used to build custom collections.

Arrays and collections are always zero based in .NET.

Generic Lists are the easiest way to represent a collection, e.g.:

Public Function Main(parameters As ISKeyValueList) As Boolean

 Dim i As Integer

 Dim TestItems As List(Of TestClass)

 ' Assume Success

 Main = True

 ' Create Collection

 TestItems = New List(Of TestClass)

 For i = 0 To 9

 TestItems.Add(New TestClass("Person " & CStr(i), #9/4/1971#.AddYears(i)))

 TestItems(i).City = "Napier"

 Next

 MsgBox(TestItems(0).Name & " – Age: " & CStr(TestItems(0).Age))

End Function

Page 27 of 57

NOTE: Arrays are the fastest structure to use but Generic Lists give the most flexibility and

should be used instead of ArrayLists.

Page 28 of 57

Database
This section relates to the finPOWER Connect database and using code to access it.

WARNING: Never perform direct updates on the finPOWER Connect database. This is likely to

cause issues and violates the Intersoft Licence Agreement.

The business layer does not expose any methods that allow the database to be directly

updated.

Database Structure
The same finPOWER Connect database is used by both MS Access and SQL Server (although

additional indexes are created in the SQL Server version).

The database is structured as follows:

• All table names are named in the singular, e.g.:

o Account

o Client.

• Field names a camel cased, e.g.:

o Account.AccountId

o Client.FirstName

• Acronyms in field names are lower case except for the first letter, e.g.:

o HtmlNotes

o NOTE: A few exceptions do exist, e.g., Account.PaymentDDStopToDate

• Index and relationship (foreign key) names are generated automatically.

o Primary Key Indexes will be named PK_[TableName].

o Other Indexes will be named IX_[IndexName].

o Relationship Indexes will be named RI_[IndexName].

o Extended Indexes (see below) will be named XX_[IndexName].

• Field names do not exceed 24 characters

• Table names do not exceed 20 characters.

• Intersoft do not use Boolean fields since these vary between providers, e.g., MS Access

represents True and False as 0 and -1 whereas SQL Server represents them as 0 and 1.

o Booleans use the Integer type. This has the added advantage that they can be changed

to store Enum values without having to change the database structure.

• MS Access has a limited number of indexes allowed. Any relationships use an index on both

the primary and foreign tables.

o The finPOWER Connect database has an ISIndex table which holds details of extended

indexes that will be created, e.g., when copying to SQL Server.

 The contents of this table are generated during the database upgrade process.

 This allows us to have provider-specific indexes but still maintain our base database in

MS Access.

o Manual Referential Integrity:

 In many cases, manual referential integrity is maintained by our business layer code.

Reasons for this include:

• Some 'Cascade Update' type relationships (those with circular references) are not

supported by SQL Server.

Page 29 of 57

• MS Access's 32 index limit (relationships are counted as indexes in MS Access) has

been reached.

• Time critical dates including auditing information such as Created and Last Updated dates

are stored in UTC format on the database, e.g.:

o Client.CreateUtcDate

o Client.UpdatedUtcDate

o These dates are always converted to local time for viewing purposes within finPOWER

Connect.

Transactions
Including database updates in a transaction ensures that all or none of the updates occur.

• Internally, Intersoft's database providers do not support nested transactions since these are

not supported on all databases. Instead, only a single level of transaction is supported.

o Even though our code may call TransactionBegin multiple times, in reality only a single

transaction is started and as soon as a TransationRollback occurs, it is assumed that

the entire database transaction will be rolled back.

• A special database object is available to Scripts via finBL.Database.

o This object allows Transactions to be started, committed or rolled back.

WARNING: Never exit a Script (or other code) after beginning a database transaction without

first either committing or rolling back the transaction.

If a Script leaves the finPOWER Connect business layer within a database transaction, this will

automatically be rolled back and the Script will fail. The same is not true for external code

using the business layer.

As of finPOWER Connect version 2.03.00, beginning a transaction will return a Boolean value

which should be tested by Scripts and external code, e.g.:

Public Function Main(parameters As ISKeyValueList) As Boolean

 ' Assume Success

 Main = True

 If finBL.Database.TransactionBegin() Then

 ' Do work

 If Main Then

 finBL.Database.TransactionCommit()

 Else

 finBL.Database.TransactionRollback()

 End If

 Else

 Main = False

 End If

End Function

When beginning a Transaction using the TransactionBegin method, an exception will be

thrown if a database transaction is already in use, e.g., from within a Script that is run within

the database transaction started by the business layer.

The following example only begins a database transaction if necessary:

Public Function Main(parameters As ISKeyValueList) As Boolean

 Dim TransactionStarted As Boolean

Page 30 of 57

 ' Assume Success

 Main = True

 ' Begin Transaction?

 If Not finBL.Database.InTransaction Then

 If finBL.Database.TransactionBegin() Then

 TransactionStarted = True

 Else

 Main = False

 End If

 End If

 If Main Then

 ' Do work

 ' Commit/ Rollback Transaction

 If TransactionStarted Then

 If Main Then

 finBL.Database.TransactionCommit()

 Else

 finBL.Database.TransactionRollback()

 End If

 End If

 End If

End Function

The important thing to note is that a transaction is only started if finPOWER Connect is not

already running within a database transaction. Conversely, the transaction is only committed

or rolled back if it was started within the Script.

IMPORTANT: Having to test whether the database is already in a transaction would not be

common and should be used with caution.

If however the Script or function can be called from multiple places, some of which are already

within a transaction then this logic will be necessary.

Starting a transaction can put locks on a database which might mean that other users cannot

read or write to the database until the transaction is complete.

When a large number of records need to be processed, e.g., to update a 'Processed External'

flag on Account Transactions, it is important to decide whether it is best to use a transaction

for all updates which may cause the database to become locked for a long period or whether to

use transactions more sparingly, e.g., when looping through a list of Accounts, only start and

commit a transaction for each iteration rather than starting the transaction before the loop and

committing it after the loop has finished.

Page 31 of 57

ISSelectQueryBuilder
The Select Query Builder object allows SQL SELECT queries to be built using an object model.

This abstracts the job of creating database provider specific SQL and, within reason, can create

SQL generated for both MS Access and SQL Server.

Simple Case

Select all records from the Client table.

sqb = mDatabase.CreateSelectQueryBuilder()

With sqb

 .Table = "Client"

 .Fields.AddList("ClientId,Name,Notes")

 .OrderByFields.Add("ClientId")

End With

Limit Results

Select the 10 last updated records from the Client table (sorted by UpdatedUtcDate DESC).

sqb = mDatabase.CreateSelectQueryBuilder()

With sqb

 .Table = "Client"

 .TopLimit = 10

 .Fields.AddList("ClientId,Name,Notes ")

 .OrderByFields.Add("UpdatedUtcDate", True)

End With

NOTE: It doesn't make sense to use a 'Top Limit' without also ordering the records being

retrieved.

Join Tables

Select Account and Main Client details (uses an INNER join but you can also specify LEFT or

RIGHT joins).

This example also includes a simple WHERE clause.

sqb = mDatabase.CreateSelectQueryBuilder()

With sqb

 .Table = "Account"

 .Fields.AddList("Account.AccountId,Account.Name ")

 .Fields.AddList("Client.ClientId,Client.Name,Client.Notes")

 With .SqlWhere

 .AppendComparisonString("Account.AccountId", "LIKE", "L1*")

 End With

 .Joins.Add("Client", "Client.Pk", "Account.ClientPk", iseSelectQueryJoinType.Inner)

 .OrderByFields.Add("Account.AccountId")

End With

NOTE: When using joins, always refer to field names including their table, even if they are

from the primary table, e.g., Account.Name.

Page 32 of 57

Sub-Query in Fields

You can use an ISSelectQueryBuilder returned by the .Fields.AddSubQuery method when

adding the fields list to return the result of a sub-query, e.g.:

With sqb

 .Table = "Account"

 .Fields.AddList("AccountId, Name ")

 ' Return Maximum Transaction Date (excluding reversed items)

 With .Fields.AddSubQuery("LastTransactionDate").SubQueryBuilder

 .Table = "AccountTransaction"

 .Fields.AddMax("Date")

 .SqlWhere.AppendComparisonField("AccountPk", "=", "Account.Pk")

 .SqlWhere.AppendComparisonNull("ReversePk")

 End With

End With

Where Clause

The .SqlWhere property of the ISSelectQueryBuilder object is actually an

ISSqlWhereBuilder object.

Examples of valid SQL WHERE comparisons are:

With .SqlWhere

 .AppendComparisonIntegerBoolean("Active", True)

 .AppendComparisonDate("DateOfBirth", ">", New Date(1970, 12, 25))

 .AppendComparisonDecimal("Amount", "<=", 123.45)

 .AppendComparisonNull("Name")

 .AppendComparisonNotNull("Name")

 .AppendComparisonField("Account.ClientPk", "=", "Client.Pk")

 .AppendComparisonString("LastName", "=", "Smith")

 .AppendDateRange("DateOfBirth", New ISDateRange(New Date(1970, 12, 25), New Date(1978, 1, 25)))

 .AppendRange("LastName", "Smith,Jones,Brown,John*", iseRangeDataType.String)

End With

NOTE: All Boolean values in the finPOWER Connect database are actually Integer fields hence

the use of AppendComparisonIntegerBoolean.

By default, all comparisons within the .SqlWhere property are AND comparisons. These can be

mixed with OR comparisons using blocks, e.g.:

With sqb.SqlWhere

 .BlockBegin(iseSqlWhereBuilderNestedBlockType.OrBlock)

 .AppendComparisonString("LastName", "=", "Smith")

 .AppendComparisonString("LastName", "=", "Jones")

 .BlockEnd()

 .BlockBegin(iseSqlWhereBuilderNestedBlockType.OrBlock)

 .AppendComparisonString("FirstName", "=", "Paul")

 .AppendComparisonString("FirstName", "=", "John")

 .BlockEnd()

End With

This will produce the following SQL:

WHERE (LastName='Smith' OR LastName='Jones') AND (FirstName='Paul' OR FirstName='John')

NOTE: When the SQL is generated, the required brackets are added between the various

blocks.

Where Clauses with Wildcards

Regardless of the Database provider, you must use "_" and "%" for matching any single

character in its position or for matching zero or more character in its position respectively.

Page 33 of 57

NOTE: Microsoft Access/ Jet databases (mdb) use "?" and "*" when connecting via DAO –

which is what is used with the Access application itself. Do not use these characters within

finPOWER Connect.

Examples of valid SQL WHERE wildcards are:

With .SqlWhere

 .AppendComparisonString("LastName", "Like", "Sm_th")

 .AppendComparisonString("LastName", "Like", "Sm%")

End With

Where Clause with Sub-Query

Using a sub-query in an SQL WHERE clause is achieved by using a secondary

ISSelectQueryBuilder object, e.g.:

sqb = mDatabase.CreateSelectQueryBuilder()

sqbsub = mDatabase.CreateSelectQueryBuilder()

With sqb

 .Table = "Account"

 .Fields.AddList("AccountId,Name")

 With .SqlWhere

 ' Status

 .AppendComparisonInteger("Account.Status", "=", CInt(isefinAccountStatus.Open))

 ' Must be Opened on/after date posting

 .AppendComparisonDate("Account.DateOpened", "<=", mPostPaymentTransactionsDate)

 ' Only if Transactions to DD

 With sqbsub

 .Table = "AccountTransaction"

 .Fields.AddConstant("*")

 With .SqlWhere

 .AppendComparisonField("Account.Pk", "=", "AccountTransaction.AccountPk")

 .AppendComparisonNull("ReversePk")

 .AppendComparisonDate("Date", "<", mPaymentsDueProcessToDate.AddDays(1).Date)

 .AppendComparisonInteger("DDStatus", "=",

isefinTransactionDirectDebitStatus.ToBeProcessed)

 End With

 End With

 .AppendExists(sqbsub)

 End With

End With

IDataReader
This is a common interface to the .NET DataReader object.

A DataReader is similar to a forward only ADO RecordSet in VB6/ VBA.

Reading the results of a Select Query

The following example creates a Select Query and reads the results using a Data Reader.

Dim dr As IDataReader

Dim sqb As ISSelectQueryBuilder

' Assume Success

Main = True

' Create Query

sqb = finBL.Database.CreateSelectQueryBuilder()

With sqb

 .Table = "Client"

 .Fields.AddList("ClientId,Name")

 .OrderByFields.Add("ClientId")

End With

' Execute Query

If sqb.ExecuteDataReader(dr) Then

Page 34 of 57

 ' Iterate Results

 Do While dr.Read()

 Debug.Print(finBL.Database.GetFieldString(dr!ClientId))

 Debug.Print(finBL.Database.GetFieldString(dr!Name))

 Loop

 ' Close Data Reader

 finBL.Database.DataReaderClose(dr)

Else

 ' Failed

 Main = False

End If

WARNING: Always close the Data Reader after using it.

The ISDatabaseBL object has various methods to get values from the database, e.g.:

• GetFieldString

• GetFieldIntegerBoolean

NOTE: Always use these methods since they handle Null database values and also handle

converting Integers to Boolean values where necessary.

Checking for Null values

As above, it is preferable to use "GetField*" methods to get column values from a data row; to

avoid errors with Null values.

However, if you wish to test a column for a Null value use the "ISDBNull" function as shown

below:

Dim dr As IDataReader

Dim sqb As ISSelectQueryBuilder

Dim sqbsub As ISSelectQueryBuilder

' Assume Success

Main = True

' Create Query

sqb = finBL.Database.CreateSelectQueryBuilder()

With sqb

 .Table = "Client"

 .Fields.AddList("ClientId,Name,DateOfBirth")

 .SqlWhere.AppendRange("ClientTypePk",

finBL.ClientTypes.GetIndividualPksList(True).ToCsvString(), iseRangeDataType.Integer)

 .OrderByFields.Add("ClientId")

End With

' Execute Query

If sqb.ExecuteDataReader(dr) Then

 ' Iterate Results

 Do While dr.Read()

 If IsDBNull(dr!DateOfBirth) Then

 finBL.DebugPrintFormat("Client {0}, '{1}'", finBL.Database.GetFieldString(dr!ClientId),

finBL.Database.GetFieldString(dr!Name))

 End If

 Loop

 ' Close Data Reader

 finBL.Database.DataReaderClose(dr)

Else

 ' Failed

 Main = False

End If

Of course, in this example, you would be better including the test in the SQL Query.

Page 35 of 57

Common Objects
This section lists some common objects (defined in ISRuntime) that are used throughout the

system.

ISList
• Used to maintain and generate a comma-separated list.

o Can also use a different delimiter.

• Handles quoting of values (e.g., values containing commas) automatically.

• See the finPOWER Connect Business Layer help for a full list of members.

Dim List As ISList

Dim strTemp As String

' Create List

List = New ISList()

' Populate from CSV String

List.FromCsvString("one,two,three")

' Add more items

List.Add("four")

List.Add("five")

List.Add("FIVE", True, True) ' This will not add to the list

' Display count

Debug.Print("List contains " & CStr(List.Count) & " items")

' Remove tem2

List.Remove("four")

List.RemoveAt(1)

' Serialise to a CSV String

strTemp = List.ToCsvString()

' Clear

List.Clear()

ISKeyValueList
• Used to maintain a list of key/value pairs.

• Can be serialised to and from XML.

• This is the basis for all of the UserData properties in finPOWER Connect, e.g.,

finClient.UserData.

Dim kvl As ISKeyValueList

Dim strTemp As String

' Create

kvl = finBL.CreateKeyValueList()

' Add items

kvl.SetBoolean("BoolValue", True)

kvl.SetDate("DateValue", Now)

kvl.SetDecimal("DecValue", 123.56)

kvl.SetString("StringValue", "This is some text")

' Check to see if a value exists

Debug.Print(CStr(kvl.Exists("DecValue"))

' Get a value

strTemp = kvl.GetString("StringValue")

' Get a value that doesn't exist (the default value will be returned)

strTemp = kvl.GetString("XXX", "Default Value")

Page 36 of 57

' Persist to an XML String

strTemp = kvl.ToXmlString()

' Populate from an XML String

If Not kvl.FromXmlString(strTemp) Then

 ' Failed

End If

' Clear

kvl.Clear()

Page 37 of 57

Parameter Sets and User Defined Indexes

Overview
• finPOWER Connect introduced the idea of 'Parameter Sets'.

o These are represented by the finParameterSet object for the Admin Library version but

for the sake of this document, the ISParameters object is generally assumed.

o These allow such functionality as:

 Recording extra details against a record, e.g., an External File Number (for a Credit

Bureau) against a Client record.

• This is done via a UserData property on the object which is actually an

ISKeyValueList object.

 Defining and allowing entry of parameters for a report or Script.

• Many objects, e.g., finClient allow User Defined Data to be saved.

o These objects have a UserData property which is an ISKeyValueList object.

o This data is typically stored in a UserData field on the database table (e.g.,

Client.UserData) as an XML String.

o XML data is not optimal for querying purposes, therefore some tables also define 10

fields of 50 characters each (User0 to User9) in which to store data that needs to be

queried.

o Upon saving the record, any entries in the UserData Key Value List with a

UserDefinedIndex property of 0 to 9 will also be saved in the User0 to User9 fields.

 This allows these values to be easily queried.

ISKeyValueList vs ISParameters
Parameter Sets and the UserData property know nothing about each other.

Parameters are represented by the ISParameters object:

• This object defines a (mainly) User Interface representation of how data should be entered,

e.g., whether to display a list and what items should appear in the list.

• Although each ISParameter object has a Value property, this is distinct from the value

contained in the UserData property.

UserData is represented by an ISKeyValueList object:

• This object holds only values and has no concept of how that value should be displayed in a

User Interface.

• However, each item in the list has a UserDefinedIndex property which, if set can (if

supported) be used to write the value the a denormalised field on the database, e.g.:

o If an entry in a finClient.UserData list has a UserDefinedIndex of 2, this value will be

saved to the Client.User2 database field.

User Interface functionality generally creates a series of Parameters (from an ISParameters

object) and then populates the corresponding User Interface controls with the values stored in

an ISKeyValueList.

When the User changes the values on-screen, the Parameters are updated and then, at some

point, the underlying ISKeyValueList will be updated with the values entered into the

Parameter Controls.

Page 38 of 57

IMPORTANT: When setting User Data properties (e.g., finClient.UserData) using the

business layer, you MUST set the UserDefinedIndex property of the item

(ISKeyValueListItem.UserDefinedIndex) for that value to be written to the corresponding

User0 – User9 on the database.

NOTE: The Audit page on various forms (e.g., the Clients form) allows you to view the raw

XML UserData stored on the record. This may well contain values that are never displayed on

the form.

finPOWER Connect versions 1.06.06 and Above

An optional parameter to specify the UserDefinedIndex property of an item was added to the

various 'Set' methods of the ISKeyValueList object to ease scripting, e.g.:

' Assume Success

Main = True

' Load Client

Client = finBL.CreateClient()

Main = Client.Load("C10000")

' Set User Data

If Main Then

 With Client.UserData

 .SetString("VedaFileId", "12345678", False, 3) ' False (the default) means do not encrypt

 End With

End If

' Save Client

If Main Then

 Main = Client.Save()

End If

Page 39 of 57

Scripts
This section contains guidelines for creating a coding Scripts.

Scripts can access the finPOWER Connect business layer via the finBL property. Information

regarding the Script can be accessed via the special ScriptInfo property.

NOTE: As of finPOWER Connect 2.03.01, finBLShared and ScriptInfoShared properties are

also available.

These are 'Shared' (Static in C#) properties and can therefore be used by private classes

defined within the Script; something that is not possible with the finBL and ScriptInfo

properties.

New Scripts
• Where possible, base new Scripts on an existing or built-in Script.

• All Scripts should use Option Explicit and, if possible, Option Strict.

• All Scripts should have a standard remarks section at the top.

o This section is generated when creating a new Script.

Therefore, all Scripts should start out something like this (which is the template header for

'General' type Scripts):

Option Explicit On

Option Strict On

' ###

' Short Script Description

'

' Version: 1.00 (21/07/2015)

'

' Usage: Location that this Script is used

' ###

NOTE: When updating a Script, always update the version and date in the remarks at the top.

Configuration
Ensure you set a reasonable Timeout period when defining the Script.

WARNING: Long-running Scripts can have a Timeout period of zero which means the Script

will never time-out. Use this with caution.

Important Information
• ALWAYS test the return value of business layer methods and act accordingly as outlined in

the Checking Return Values section.

• Ensure that a timeout period (seconds) is specified when executing database queries if the

default timeout specified under Global Settings, General may not be sufficient, e.g.:

Dim sqb As ISSelectQueryBuilder

' Assume Success

Main = True

Page 40 of 57

With sqb

 .Table = "Account"

 .Fields.AddList("AccountId,Name")

 Main = .ExecuteDataReader(dr, True, , 200)

End With

• Calls to any Web Services, e.g., the New Zealand PPSR will fail if performed inside of a

database transaction.

Page 41 of 57

VBA and VB6
Information in this section relates to both VBA and COM (e.g., VB6) applications.

• Passing objects in VBA to a .NET function.

o May fail with an error "Invalid procedure call or argument (Microsoft runtime error 5)".

o Try either:

 Dimming object as "object".

 Enclosing variable name in brackets to force VBA to pass as ByVal.

o This is because variables are "variants" and not objects.

o E.g., the following:

If Not finBatch.Transactions.Add(finBatchTransaction) Then

Could be changed to:

If Not finBatch.Transactions.Add((finBatchTransaction)) Then

Page 42 of 57

VBScript
The finPOWER Connect business layer is largely incompatible with VBScript since all variables

in VBScript are Variants.

Page 43 of 57

Appendix A – Miscellaneous

Attributes
The following attributes are commonly used within the business layer.

When the business layer help is built, special warnings are included in the member help if one

or more of these attributes are detected.

Obsolete

Used to flag a member that should no longer be used but has not been removed to retain

compatibility, e.g.:

<Obsolete("Deprecated Property. Please use finAccount.Calculation.StatementCycle property

instead.")>

EditorBrowsable

This determines how and if the member will appear in intellisense, e.g.:

<EditorBrowsable(EditorBrowsableState.Never)>

This is often, this is used in conjunction with 'Obsolete' to hide deprecated members so that

that are not used by accident.

ISMemberFlags

This is a custom Intersoft attribute and is used to flag members for any of the following:

• System Use Only

• Beta

Page 44 of 57

Appendix B – Utility Functions
This section highlights some of the more common utility functions available from the finPOWER

Connect business layer.

Date Utilities (ISRuntime)
These are found under Runtime.DateUtilities. See the finPOWER Connect business layer

help for a full list.

• AgeAsText(dateOfBirth, [dateAsAt])

o Returns a String representing someone's age, e.g., 47 years.

• AgeInYears(dateOfBirth, [dateAsAt], [ByRef months], [ByRef days])

o Calculates an age in years. You can also retrieve the months and days parameters for a

more precise age.

• ConvertTextToExpiryDate(value)

o Convert text, e.g., 0712 or 07/2012 into an expiry date (for Credit Cards). The date will

always be the end of the month, in this case 31/07/2012.

• ConvertToDate(value, …)

o Convert a value, e.g., a text value into a Date, e.g., 05072012 or 5/7/2012.

o This function is very flexible and can recognise many date formats.

• ConvertToDateTime(value, …)

o As per ConvertToDate but also includes a time portion.

• ConvertToTime(value)

o Convert a value, e.g., a text value into a Date containing only a Time portion.

• DaysInMonth(value)

o Given a Date value, returns the number of days in the month.

• EndOfMonth(value)

o Given a Date value, returns a Date which is the end of the month, e.g., 05/07/2012 will

return 31/07/2012.

• EndOfPreviousMonth(value)

o As per EndOfMonth but returns the end of the previous month.

• IsEndOfMonth(value)

o Checks whether the specified Date value is the last day of the month.

• IsLeapYear(year)

o Cheks to see if the specified year is a Leap Year.

• MonthsDifference(date1, date2, [ByRef days])

o Returns the whole number of months between two dates and optionally the number of

days.

• PeriodToWords(date1, date2)

o Calculates the period between two dates and converts this to words, e.g., 3 Months.

• DayOfMonthOrdinalWord(day)

o Returns the 'ordinal' day given a day of the month, e.g., passing in 3 will return 3rd.

Time Zone Utilities (ISSupport)
These are found under TimeZoneFunctions. See the finPOWER Connect business layer help for

a full list.

• GetCurrentLocalDate

Page 45 of 57

o Get the local date, i.e., the Windows date.

• GetCurrentLocalDateTime

o Get the local date and time, i.e., the Windows date.

• GetCurrentDatabaseDate

o Get the date adjusted for the database's time zone (specified under Global Settings).

• GetCurrentDatabaseDateTime

o Get the date and time adjusted for the database's time zone (specified under Global

Settings).

• GetCurrentTimeZoneDate(timeZoneId)

o Get the date adjusted for the specifed time zone.

• GetCurrentTimeZoneDateTime(timeZoneId)

o Get the date and time adjusted for the specified time zone.

• GetCurrentUtcDateTime

o Get the UTC date and time.

File Utilities (ISRuntime)
These are found under Runtime.FileUtilities. See the finPOWER Connect business layer

help for a full list.

• AppendTextToFile(filename, text, [writeLine])

o Appends text to the specified file.

o Returns False if this operation fails.

• CopyFile(sourceFileName, destinationFileName, [copyExclusive], [retainDateInformation])

o Copy one file to another, optionally ensuring that nobody else is accessing the file and

preserving the file's date information.

o Returns False if this operation fails.

• CopyFiles(sourceFolder, destinationFolder, includeSubFolders, [copyExclusive])

o Copy the contents of one folder to another.

o Returns False if this operation fails.

• CreateFolder(folderName)

o Create a folder.

o Returns False if this operation fails.

• DeleteFile(fileName)

o Delete a file.

o Returns False if this operation fails.

• DeleteFolder(folderName, [recursive])

o Deletes a folder and optionally recurses sub-folders.

o Returns False if this operation fails.

• FileExists(filename, [allowWildcards])

o Checks whether a file exists and returns a Boolean value.

• FolderExists(folderName)

o Checks whether a folder exists and returns a Boolean value.

• GetFileBase(fileName)

o Get the name of a file excluding file extension and path.

• GetFileUtcDateTime(fileName)

Page 46 of 57

o Get a file's Date and Time in UTC format.

o Will return a Date = Nothing if the operation fails, e.g., the file does not exist.

• GetFileExtension(fileName)

o Get the file extension excluding the dot.

• GetFileFolder(fileName, [assumeCurrentFolderIfNoFolder])

o Get a file's folder.

• GetFileList(folder, ByRef list, [filter], [includeFolders])

o Get a list of files in a folder.

o Returns False if this operation fails.

• GetFileName(fileName)

o Get the name of a file excluding any folder information.

• GetFolderList(folder, ByRef list)

o Get a list of sub-folders in the specified folder.

o Returns False if this operation fails.

• IsFileNameValid(fileName)

o Check to see if a file name is valid, e.g., it contains no invalid characters.

• MoveFile(sourceFileName, destinationFileName)

o Move a file.

o Returns False if this operation fails.

• ReadTextFile(fileName, ByRef text)

o Read the contents of a text file into a String.

o Returns False if this operation fails.

• RenameFile(fileName, newFileName)

o Rename a file.

o Returns False if this operation fails.

• RenameFolder(fileName, newFolderName)

o Rename a folder.

o Returns False if this operation fails.

• WriteTextFile(fileName, text)

o Write a text file.

o Returns False if this operation fails.

• TempPath()

o Returns the path of the Window's temp folder including the trailing path character (\).

HTML Utilities (ISRuntime)
These are found under Runtime.HtmlUtilities. See the finPOWER Connect business layer

help for a full list.

• HtmlEncode(text, [makeConsecutiveSpacesNonBreaking], [encodeLineBreaks])

o HTML encode text, optionally making vbNewLines into
 tags and turning

consecutive spaces into .

o NOTE: This is usually shortcut, i.e., finBL.HtmlEncode.

• JavaScriptEncode(text, quote)

o Encodes text as a JavaScript String, optionally including surrounding quotes.

• PlainTextFromHtml(html)

Page 47 of 57

o Attempts to return a plain text (untagged) version of a piece of HTML.

• UrlDecode(text)

o Decodes text that is URL encoded.

• UrlEncode(text)

o Encode text for use as a URL (usually the QueryString, i.e., the part after the question

mark).

Number Utilities (ISRuntime)
These are found under Runtime.NumberUtilities. See the finPOWER Connect business layer

help for a full list.

• AmountInWords(value, …)

o Convert a currency (Decimal) value to the equivalent in words, e.g., 123.56 will convert

to 'one hundred and twenty three dollars and fifty six cents'.

• ConvertToCurrency(value)

o Convert a value, e.g., a String or a database field to a currency value, rounded as per

the current settings.

• ConvertToDecimal, ConvertToDouble, ConvertToInteger

o Convert the specified value to the correct data type.

• RoundCurrency(value)

o Round a currency value to the next smallest value.

o NOTE: 0.5 rounds up.

• RoundCurrencyDown(value)

o Round a currency value DOWN to the next smallest value.

• RoundCurrencyUp(value)

o Round a currency value UP to the next smallest value.

• RoundDecimal(value, [decimals])

o Round a Decimal value to a specified number of decimal places.

Text Utilities (ISRuntime)
These are found under Runtime.TextUtilities. See the finPOWER Connect business layer

help for a full list.

• Base64Encode(text)

o Base 64 encode text.

• Base64Decode(text)

o Decode Base 64 encoded text.

• CreateNumberFormat(…)

o Create a number format String to be used with the VB.NET Format function.

• ListSeparate(separator, ParamArray)

o Separate each of the ParamArray values with the separator String, ignoring any values

that are blank String, e.g., ListSeparate(" ", "Mr", "Paul", "", "Smith") would

return "Mr Paul Smith".

• NumbersOnly(sourceString)

o Strips all non-digits from a String.

• ProperCase(sourceString, [adjustCommonNames])

o Attempts to proper case a String, optionally handling common names correctly, e.g.,

converting "mcdonald" to "McDonald" and not "Mcdonald".

Page 48 of 57

• RemoveLeadingZeros(sourceString)

o Remove leading zeros from a String.

• SplitWordsAtCapitals(sourceString, …)

o Split a String containing no spaces into Words, e.g., "TimeOfDay" would return "Time Of

Day".

o NOTE: This is useful for presenting database column names and properties in a more

readable format which is why camel casing is used (and also why acronyms such as

HTML are not capitalised).

• RTrimWhiteSpace(sourceString)

o Remove spaces and new line characters from the end of a String.

Time Zone Functions (ISRuntime)
These are found under Runtime.TimeZoneUtilities and are generally used to get the current

Date, or to convert Dates to a differet Time Zone.

• See also finBL.TimeZoneFunctions and use in preference.

o GetCurrentDatabaseDate and GetCurrentDatabaseDateTime.

 Return the current Date and Date/Time using the Database Time Zone.

 These dates should generally be used.

o GetCurrentLocalDate and GetCurrentLocalDateTime.

 Return the current Date and Date/Time of the operating system.

 Be careful of using these from a Server, as depending on the Time Zone of the Server

might not be what you expect.

o GetCurrentUtcDateTime.

 Returns the current UTC Date/Time.

Validation (ISRuntime)
These are found under Runtime.Validation and are generally used in Property Sets to

validate values. See the finPOWER Connect business layer help for a full list.

• ValidateDate(value)

o Return a Date with the time portion removed.

• ValidateDateTime(value)

o Return a Date with the time portion to the nearest second, i.e., fractions of a second

removed.

• ValidateCurrency(value, [minValue], [maxValue])

o Return a Decimal value rounded as per currency rules and adjusted to fit within specified

Max and Min values.

• ValidateDecimal, ValidateDouble, ValidateInteger

o Return a value adjusted to fit within specified Max and Min values.

• ValidateString(value, [maxLength], …)

o Return a String value, optionally truncates to the maximum specified length and with

trailing spaces removed.

• ValidateTime(value)

o Return a Date value containing only a Time portion.

Page 49 of 57

Appendix C - IDE Configuration
Internally, the Intersoft development environment is Visual Studio although the Express

versions such as Visual Studio Express or Visual Studio Express for Web (or later versions) can

be used.

Project Settings
The following project Compile settings are recommended:

• Option Explicit On

o This is used without exception; all variables must be declared.

• Option Strict On

o Only modules that require late binding have Option Strict turned off, therefore, all

variables must have a type and any conversions to that type performed explicitly.

• Option Infer Off

o The use of Option Infer is not recommended and is never used internally within Intersoft

Systems.

NOTE: Much of the finPOWER Connect business layer is designed to return objects and values

ByRef hence Intersoft also recommend that the Use of variable prior to assignment

warning configuration is set to None to avoid unnecessary compiler warnings.

Page 50 of 57

Editor Settings
The following Tab settings are used (these also match the Script Editor used internally within

finPOWER Connect):

• Indenting

o Using Smart indenting keeps indenting consistent.

• Tabs

o Use a Tab size of 2 and also an Indent size of 2.

o Using Insert spaces means that tab characters are replaced with spaces. This retains

the code indenting when copying and pasting code samples or editing files in a different

editor.

NOTE: Configuration of tabs and indenting can vary between versions of Visual Studio but are

typically found from the Tools, Options form under the Text Editor heading.

Page 51 of 57

Appendix D - Language Features
Some features that are used (and not used in certain circumstances) are:

Function Overloading
Having multiple functions with different signatures is used sparingly in public methods since

COM (and therefore VBA) cannot easily use them.

However, for more recent functionality such as Summary Tables (the ISSummaryTable object

used when creating Summary Pages), more extensive use of function overloading has been

made.

Generics
Generics were introduced to VB.NET well into the development of finPOWER Connect and are

therefore not used in earlier code.

Also, they are incompatible with COM (and therefore VBA) and were avoided.

Later code in the business layer does make use of Generics, in particular, generic Lists such as

List(Of String).

Any function receiving or return Generic objects is flagged as not exportable to COM.

Optional Parameters
Optional parameters are used on many public methods although Intersoft tend to avoid using

them for private functionality.

Late Binding
Late binding is rarely used and is generally limited to User Interface code such as interacting

with Microsoft Word, Outlook and Excel.

ByRef Parameters
Use of ByRef parameters is used extensively. This is useful where multiple return values are

required and when a function returns True or False depending on success (explained later)

but one or more additional return values are required.

Interfaces
Interfaces are used extensively to provide for standard functionality such as:

• As object exposing whether it is "dirty", e.g., finAccount.IsDirty.

• An object exposing a user readable version of its name, e.g., finClient.ObjectName.

• An object that can serialise itself to and from a String, e.g.,

ISDateRange.SerialiseToString().

Nullable Types
Nullable Types are not used within or exposed by the finPOWER Connect business layer.

However, Nullable Types are used extensively within Web Service code, custom Web Service

Scripts and HTML Widgets and Portals.

Page 52 of 57

Appendix E - Code Layout

Tabs and Indentation
As mentioned in the IDE section, Intersoft use a tab spacing of 2.

All nested blocks (If, Loops etc) are indented. Smart formatting does this automatically.

NOTE: Sometimes smart formatting may not work correctly. The easiest way to reformat is to

select the entire function and press the Tab key.

Remarks
Most blocks of code should be remarked in some way. Generally, this is a simple one liner,

e.g.:

Public Function Clear() As Boolean

 ' Assume Success

 Clear = True

 ' Reset Common Fields to New Record Defaults

 mCreatedDate = Nothing

 mCreatedUserPk = 0

 ' Reset Fields

 mAccountId = ""

 mAccountManagerUserPk = 0

 ' Objects

 Me.BankingDetailsReset()

 ' Initialise Objects to Load as Required

 Me.AccountingLedgersRefresh()

 ' Other

 mBankingDetails1PaymentMethodPk = 0

 ' Not Dirty

 Me.DirtyClear()

End Function

Often, the top line in a Select Case block has a remark just to break the code up visually,

e.g.:

' Create Objects

Select Case mWorkflowItem.StatusNotesEntryMethod

 Case isefinWorkflowItemStatusNotesEntryMethod.ParametersUserDefinedWorkflow

 ' Create Parameters

 mParameters = mWorkflowItem.CreateParameters()

 ' Calculate Default Parameter Values

 If Not mParameters.CalculateValues(True, False) Then

 UserInterface.ErrorMessageShow()

 End If

 ' Set User Data used by Parameters

 mParameters.UpdateFromKeyValueList(mWorkflow.UserData.Clone())

 Case isefinWorkflowItemStatusNotesEntryMethod.ParametersUserDefinedWorkflowItem

 ' Create Parameters

 mParameters = mWorkflowItem.CreateParameters()

 ' Calculate Default Parameter Values

 If Not mParameters.CalculateValues(True, False) Then

 UserInterface.ErrorMessageShow()

 End If

Page 53 of 57

 ' Set User Data used by Parameters

 mParameters.UpdateFromKeyValueList(mWorkflowItem.UserData.Clone())

End Select

NOTE: The main point is to use remarks to break up code, increase readability and provide

information to oneself (and other developers), especially where the code is not obvious.

Declare Variables and other Members Alphabetically
Variables are generally declared alphabetically, e.g.:

Dim Client As finClient

Dim ClientId As String

Dim DateOfBirth As Date

• Some exceptions are:

o Where there are a large number of variables and you might want to group then together,

e.g., Client related vs Account related.

 In this case, a blank line would be used to separate the groups.

o If customisations are being made, e.g., to a built-in Summary Page Script where you

might want to leave all the standard variables together and declare any custom variables

in a separate group.

• Properties and methods (except constructors which always go at the top) are listed

alphabetically within class modules.

NOTE: Variables in VB.NET are Scope dependent, e.g., declaring a variable within an If block

means that that variable is only visible to code within the If block.

This can be useful when customising existing code, e.g., Summary Pages since it means all

code, including variable declarations can be kept in a single block.

This is not however something that Intersoft typically use within internal code.

Other Spacing

Class Spacing

Generally, each class is in its own module but where a module (or Script) contains multiple

classes, e.g., private classes within a class, 2-3 blank lines are included above the class

definition and classes are defined at the bottom of the module.

Function Spacing

1 blank line between functions.

Within a Function

1 blank line between logical blocks, i.e., pieces of code that logically go together.

NOTE: What constitutes a 'Logical Block' can be pretty subjective.

Page 54 of 57

Within a Select Case

If the Select Case is simple, no spacing is required between each Case, e.g.:

Select Case Count

 Case 1

 Message = "Thsre is 1 record."

 Case Else

 Message = String.Format("There are {0} records.", Count)

End Select

If the code within each block is more complicated then it is preferable to add a blank line

before each Case statement, e.g.:

' Create Objects

Select Case mWorkflowItem.StatusNotesEntryMethod

 Case isefinWorkflowItemStatusNotesEntryMethod.ParametersUserDefinedWorkflow

 ' Create Parameters

 mParameters = mWorkflowItem.CreateParameters()

 ' Calculate Default Parameter Values

 If Not mParameters.CalculateValues(True, False) Then

 UserInterface.ErrorMessageShow()

 End If

 ' Set User Data used by Parameters

 mParameters.UpdateFromKeyValueList(mWorkflow.UserData.Clone())

 Case isefinWorkflowItemStatusNotesEntryMethod.ParametersUserDefinedWorkflowItem

 ' Create Parameters

 mParameters = mWorkflowItem.CreateParameters()

 ' Calculate Default Parameter Values

 If Not mParameters.CalculateValues(True, False) Then

 UserInterface.ErrorMessageShow()

 End If

 ' Set User Data used by Parameters

 mParameters.UpdateFromKeyValueList(mWorkflowItem.UserData.Clone())

End Select

Page 55 of 57

Appendix F - Naming Conventions
This section details Intersoft's internal naming conventions for variables, functions and classes

and may not apply to external applications using the finPOWER Connect business layer.

Classes
• Camel cased but prefixed with the project identifier, e.g.:

o finClient

o finWorkflowFunctions

o ISRuntime (non-finPower class hence the 'IS' prefix)

o ISBankExport

• Occasionally (but not consistently), acronyms are capitalised, e.g.:

o ISBankImporterABAStandardReturnedItems_AU (the '_AU' suffix indicates that this class

is for Australian use only).

• Some acronyms such as HTML and URL are not typically capitalised, e.g.:

o finHtmlTemplateUtilities

Functions
• Camel cased as per class names, e.g.:

o Execute

o BankAccountsReset

• Try to use common verbs and follow a similar naming convention to existing methods, e.g.:

o Save

o GetBalance

o HasValues

o IsCurrent

Function Parameters
• Camel cased but with a lower-case first letter, e.g.:

o warning

o oldInitialValues

Module Variables
Typically these begin with a lower-case 'm', and match any public property names e.g.:

• mContactMethods

o Public property is named ContactMethods

• mDescription

o Public property is named Description

Exceptions include:

• Where the module variable is actually a 'Field', e.g., in a read-only version of an object such

as:

Public Class finElementRO

 ' Properties

 Public ReadOnly Pk As Integer

 Public ReadOnly AccountingLedgerGlEomSplit As Boolean

Page 56 of 57

 Public ReadOnly AccountingLedgerIncludeOpeningInReports As Boolean

Private Variables
Generally private variables are camel cased, e.g.:

Dim AuditAccount As finAccount

Dim AutoSequencedId As String

Certain variable names do not always obey this rule since they have been used historically or

are shortened for clarity. These are dependent on the individual developer but may include:

• strTemp As String

• i As Integer

• sqb As ISSelectQueryBuilder

Where using a variable that represents an object, Intersoft usually try to use the class name of

the variable type less the prefix, e.g.:

Dim Account As finAccount

Dim ClientContactMethod As finClientContactMethod

Dim BankImport As ISBankImport

Enums
• As per class names, Enums are prefixed by 'ise' and the project (for application specific

Enums) and camel cased, e.g.:

o isefinClientStatus (finPOWER based-Enum)

o isefinWorkflowItemType

o iseCodeDescriptionListType (ISRuntime based-Enum, hence no 'fin' prefix)

o iseDateFormatOrder

Enum items are camel cased, e.g.:

Public Enum isefinClientStatus

 None = 0

 Excellent = 5

 Good = 10

 Caution = 20

 Bad = 30

 Adverse = 40

 Bankrupt = 45

End Enum

NOTE: Enums are always given an explicit Integer value if they will be stored on a database.

Without this, inserting a new entry in the Enum would affect the auto-assigned value.

Underscores
• Typically, Intersoft avoid using underscores in public functions and class names. Exceptions

include a country code suffix, e.g.:

o ISBankImporterABAStandardReturnedItems_AU

• JavaScript code (e.g., for Web Services and other Web-based examples) is another

exception since an underscore is used as a convention to represent 'private', module-level

variables.

Page 57 of 57

Appendix G – Other, Internal, Coding Styles
These are coding styles that Intersoft use internally.

If Blocks
Generally, block Ifs are used rather than keeping the entire If statement of a single line, e.g.:

If (Count Mod 2) = 1 Then

 sb.Append("odd row")

Else

 sb.Append("even row")

End If

However, very simple If statements may use a single line, e.g.:

If Ok Then Ok = Account.Save()

Debug.Assert and Stop
Never use the Stop statement in code unless:

• The code in question is a Script (where Debug.Assert cannot be used).

Use Debug.Assert(False) in non-Script code to alert developers, e.g.:

Select Case Client.Status

 Case isefinClientStatus.Adverse

 Case isefinClientStatus.Bad

 Case isefinClientStatus.Excellent

 Case Else

 ' Not Handled!

 Debug.Assert(False)

End Select

	finPOWER Connect 4
	Programming Guide
	Contents
	Disclaimer
	Version History
	Introduction
	Best Practices
	Top 4 Practices
	Other Essential Practices
	Code Quality
	Secure Coding Practices
	Testing

	Programming Languages
	Option Strict
	Option Explicit
	Data Types
	Integers
	Strings
	Uninitialised Strings
	Blank Strings
	Comparing Strings
	Other String Guidelines

	Dates

	Properties vs Methods
	General
	Checking Return Values
	Resolved Properties

	Functions without Exceptions
	Other Coding Styles
	AndAlso and OrElse
	Converting to Strings

	Optimising Code
	Use Global Collections
	Caching Values
	Pass Objects, Don't Reload Them

	Tag Property
	Private Classes and Collections
	Private Classes
	Arrays and Collections

	Database
	Database Structure
	Transactions
	ISSelectQueryBuilder
	Simple Case
	Limit Results
	Join Tables
	Sub-Query in Fields
	Where Clause
	Where Clauses with Wildcards
	Where Clause with Sub-Query

	IDataReader
	Reading the results of a Select Query
	Checking for Null values

	Common Objects
	ISList
	ISKeyValueList

	Parameter Sets and User Defined Indexes
	Overview
	ISKeyValueList vs ISParameters
	finPOWER Connect versions 1.06.06 and Above

	Scripts
	New Scripts
	Configuration
	Important Information

	VBA and VB6
	VBScript
	Appendix A – Miscellaneous
	Attributes
	Obsolete
	EditorBrowsable
	ISMemberFlags

	Appendix B – Utility Functions
	Date Utilities (ISRuntime)
	Time Zone Utilities (ISSupport)
	File Utilities (ISRuntime)
	HTML Utilities (ISRuntime)
	Number Utilities (ISRuntime)
	Text Utilities (ISRuntime)
	Time Zone Functions (ISRuntime)
	Validation (ISRuntime)

	Appendix C - IDE Configuration
	Project Settings
	Editor Settings

	Appendix D - Language Features
	Function Overloading
	Generics
	Optional Parameters
	Late Binding
	ByRef Parameters
	Interfaces
	Nullable Types

	Appendix E - Code Layout
	Tabs and Indentation
	Remarks
	Declare Variables and other Members Alphabetically
	Other Spacing
	Class Spacing
	Function Spacing
	Within a Function
	Within a Select Case

	Appendix F - Naming Conventions
	Classes
	Functions
	Function Parameters
	Module Variables
	Private Variables
	Enums
	Underscores

	Appendix G – Other, Internal, Coding Styles
	If Blocks
	Debug.Assert and Stop

