
Documents/Development/finPOWER Connect/Version 3/Workflows/finPOWER Connect 3

Workflows (Version 2).docx

finPOWER Connect 3
Workflows (Version 2)

Version 3.02

9th July 2019

Page 2 of 95

Table of Contents

Disclaimer.. 5

Version History ... 6

Introduction ... 7

Workflow Type Version 2 Overview ... 8

Workflow Type Changes .. 9

Account Applications .. 9

Current Workflow Item ... 9

CanActionItem Script Event ... 9

Workflow Recall Date .. 9

'Open' Workflow Items ... 9

Outcomes on 'None' Workflow Items .. 10

Workflow Summary Script (Version 2) ... 11

Workflow Type Options ... 11

Show Completed Item Groups as a single group ... 11

Show last Item Group as a separate group ... 12

Show future Item Groups ... 12

Show Items and Item Groups flagged as 'Not Applicable' ... 12

Show skipped Items and Item Groups ... 12

Show Train Stops Diagram ... 12

Train Stops Diagram .. 13

Workflow Type Script .. 15

Completing Workflow Items from Script Code .. 17

Auto Actioning Workflow Items from Script Code ... 18

CompleteItem versus AutoActionItem ... 19

BeforeItemAction versus AfterItemAction .. 20

Automatic Questions and Item Groups .. 21

Script Events ... 22

AfterInitialise .. 23

AfterItemGroupAdd ... 24

BeforeProcess ... 26

AfterItemGroupBegin ... 27

BeforeItemAction .. 29

CouldActionItem ... 31

AfterItemAction .. 32

BeforeItemReset ... 34

AfterItemReset ... 35

BeforeClose .. 36

CanActionItem .. 37

BeforeAccountDecline .. 38

UpdateDocumentsList .. 39

GetTrainStops ... 40

Page 3 of 95

GetWorkflowItemUserDataSummary .. 42

GetWorkflowUserDataSummary .. 44

Script Responsibilities ... 45

Recording Logs ... 45

Recording New Workflows .. 45

Executing External Web Services ... 45

Database Transactions .. 47

Workflow Type Script Examples .. 48

Set Workflow Items to 'Not Applicable' When Initialising ... 48

Create New Item Group with Items from Script ... 49

Skip Items in Group and Complete Group ... 50

Skip Current Item Group and Add a new Item Group .. 51

Set Check List Items Based Upon Question Outcome .. 52

Creating Customised Documents .. 54

Creating Customised Email Documents ... 56

Creating Ad-Hoc Emails .. 58

Automatic Client Credit Enquiry - Veda (New Zealand).. 60

Automatic Client Credit Enquiry – GreenId .. 64

Automatic Applicant Credit Enquiry - Centrix (New Zealand).. 66

Documents .. 68

Workflow Type Item Wizard .. 69

Workflow Type Scripts .. 69

'Send Document' Type Items .. 69

Fully Scripted Solution ... 69

Document Scripts .. 69

Account SMS .. 71

Account Email ... 73

Client SMS ... 75

Client Email .. 76

Account Application SMS .. 78

Account Application Email .. 80

HTML Widgets .. 82

Workflow Type Item ... 82

HTML Widget ... 82

Page Sets .. 85

Workflow Type Item ... 85

Page Set ... 85

Appendix A – Helper Functions ... 88

Workflow Functions (finWorkflowFunctions) ... 88

Adding and Inserting Workflow Items ... 89

Skipping Items and Item Groups.. 91

Setting Items and Item Groups to 'Not Applicable' ... 92

Appendix B – Frequently Asked Questions .. 93

Page 4 of 95

Workflow Items ... 93

How do I get the Outcome of a Workflow Item? .. 93

Why Does Completing an Item Group from 'BeforeItemAction' Skip the Current Item? ... 93

Workflow Item Groups .. 94

How do I add an Item Group from outside of the Workflow Type Script? 94

Miscellaneous .. 95

How Do I Refresh Workflows on another Form, e.g., the Task Mananger? 95

Page 5 of 95

Disclaimer
This document contains information that may be subject to change at any stage.

All code examples are provided "as is".

This document may reference future functionality not currently available in the release version

of finPOWER Connect.

Copyright Intersoft Systems Ltd, 2015.

Page 6 of 95

Version History
Date Version Name Changes

30/01/2015 1.00 PH Created.

25/02/2015 1.01 PH Updated with more examples and appendices.

24/03/2015 1.02 PH StatusUpdatedFromScript property and GetTrainStops event added.

31/03/2015 1.03 PH Updated Appendix A to list methods to skip or 'Not Applicable' items and
item groups.

06/05/2015 1.04 PH Added more details to "AfterItemGroupAdd" event.

13/05/2015 1.05 PH FAQ for refreshing Workflows in Task Manager plus AfterItemGroupBegin
and GetWorkflowItemUserDataSummary events.

19/08/2015 1.06 PH Document Script functionality changes in version 2.03.02.

22/12/2015 1.07 PH Added note that automatic Credit Enquiry samples are unrelated to 'Credit
Enquiry' type Workflow Items.

12/07/2016 3.00 PH Updated for finPOWER Connect version 3.

13/06/2017 3.01 PH Added "HTML Widget" type Workflow Items.

09/07/2019 3.02 PH BeforeItemAction vs AfterItemAction information added.

Page 7 of 95

Introduction
This document discusses finPOWER Connect Version 3 Workflows (Version 2) and is focused on

the creation, configuration and scripting of Workflows.

Workflows require that finPOWER Connect is licensed for the Workflows Add-On.

NOTE: This document discusses Version 2 type Workflows only.

Certain functionality may not be applicable to Version 1 type Workflows or may behave

differently. Differences between Version 1 and Version 2 type Workflows are noted where

applicable.

Page 8 of 95

Workflow Type Version 2 Overview
• Version 2 type Workflows are processed differently:

o A finWorkflowExecutor object is used to process Workflows and to action Workflow

items.

 Version 1 type Workflows were processed exclusively via methods in

finWorkflowFunctions.

• The Workflow Type Script can no longer action other Workflow Items in the same way as

Version 1 type Workflows:

o See the Completing Workflow Items from Script Code section.

o Version 2 Workflows will need to be structured differently.

• Question type Workflow Items and Item Groups can now be automatic and the

'BeforeItemAction' event used to set the outcome.

Page 9 of 95

Workflow Type Changes
This section outlines the changes (from Version 1) and new options available to Version 2

Workflows.

Account Applications
• Account Applications can only use Version 2 Workflow Types.

Current Workflow Item
• finWorkflowItem.CurrentItemIndex property for an Item Group gives the index of the

Current Workflow Item.

• In Version 1 type Workflows, the Current Item is:

o The first Workflow Item in the Item Group with a status of either 'Not Started' or 'Open'.

• In Version 2 type Workflows, the Current Item is:

o Determined in the following order:

 The first Workflow Item in the Item Group with a status of either 'Not Started' that has

its AutoAction property set to True.

 The first Workflow Item in the Item Group with a status of 'Open'.

 The first Workflow Item in the Item Group with a status of 'Not Started'.

o Therefore, unlike Version 1 Workflows, any 'Open' item will be the Current item,

regardless of whether there are any incomplete items before it.

CanActionItem Script Event
• In Version 1 type Workflows, this event is only called if the Workflow Item passes all of the

built-in checks to determine whether it can be actioned.

• In Version 2 type Workflows, this event is called for all incomplete items, regardless of

whether the built-in checks passed or failed.

o This allows the Script to provide a customised error message as to why the item cannot

be actioned.

o NOTE: The Script cannot force an item to be actionable if it has failed built-in checks;

just customise the error message.

Workflow Recall Date
• In Version 1 type Workflows, the Recall Date is cleared whenever an item is actioned,

regardless of whether there is an 'Open' item such as a Wait in progress.

• Version 2 Workflow Types have a 'Clear Recall Date when completing any other item in this

group even if there is an 'Open' item' property on the Item Group to determine whether to

clear the Recall Date or not.

NOTE: This applies to 'Open' items, i.e., if there is an 'Open' item in the group, the

Workflow's Recall Date will NOT be cleared unless this option is checked.

'Open' Workflow Items
• 'Open' Workflow Items are those in a special 'Open' state.

Page 10 of 95

o These are completed automatically upon processing the Workflow (or actioning another

item) if the Workflow's recall date has been passed.

o The exception to this is 'Review' type items that must be manually completed.

• In Version 1 type Workflows, only 'Wait' and 'Review' type items could be 'Open'.

• Version 2 type Workflows have a new Outcome Action of 'Wait'.

o Therefore, these additional item types can now be 'Open':

 Question

 Decision Card

 Bank Account Enquiry Review

 Test

o Upon first actioning these items, where applicable, status notes etc. can be entered.

 This will set the item into an 'Open' state.

o Action the one of these items when it is 'Open' will simply close it.

 No further prompt is given to enter status notes etc.

Outcomes on 'None' Workflow Items
Although 'None' Workflow Items do not specify a list of outcomes, you can set the Outcome via

Script code in the 'BeforeItemAction' event, e.g.:

Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "SC1" Then

 With otherParameters

 .SetString("Outcome", "CustomOutcome")

 .SetString("StatusNotes", "Custom status notes")

 '.SetBoolean("OutcomeSuccess", False)

 .SetString("OutcomeIcon", "Neutral")

 End With

 End If

This sets the StatusOutcome property on the finWorkflowItem object and also generate a

single Outcome Item so assign the success status and icon to.

Page 11 of 95

Workflow Summary Script (Version 2)
A new, built-in Summary Script is used for Version 2 type Workflows.

NOTE: Version 1 Workflows still use the old Summary Script by default. This behaviour may be

changed in a future version when Version 2 Workflows have stabilised.

Workflow Type Options
Instead of just using Script constants to define how the Summary Page should appear, the

Workflow Type has a 'Summary Script' page that defines options that can be used by the

Summary Page Script. All of these are used by the built-in Standard Blocks.

Show Completed Item Groups as a single group

• If a Workflow has lots of groups added to it through its lifetime, this can make the 'Items'

block, through which must Users action items, a little unwieldy, e.g.:

• By grouping all completed Item Groups together, the above becomes more manageable,

e.g.:

Page 12 of 95

Show last Item Group as a separate group

• Whilst lumping all completed Item Groups into a single group make the Summary Page

more compact, often, the Workflow User may be especially interested in the last completed

Item Group.

• This option separates the last completed Item Group into its own group, e.g.:

Show future Item Groups

• This allows any future Item Groups to be displayed in the Item block.

• Future groups always appear after the current Item Group and are collapsed.

Show Items and Item Groups flagged as 'Not Applicable'

• By default, Items and Item Groups that have been flagged as 'Not Applicable' are hidden

from the Items block.

• The exception to this any Item Groups that contain one or more completed items.

o These will never be hidden, regardless of this option.

Show skipped Items and Item Groups

• By default, Items and Item Groups that have been skipped are hidden from the Items block.

• The exception to this any Item Groups that contain one or more completed items.

o These will never be hidden, regardless of this option.

Show Train Stops Diagram

• This option forces a 'Train Stops' diagram to be displayed at the top of the Items block.

• By default, this lists all Item Groups (completed and future), e.g.:

• Clicking one of the 'Train Stops' will display a summary of that Item Group including all of

the items within it.

o This summary does not allow any items to be actioned.

Page 13 of 95

Train Stops Diagram
The finWorkflow object has a GetTrainStops method that returns a finWorkflowTrainStops

collection.

This is used to generate the Train Stops diagram.

The Workflow Type Script's 'GetTrainStops' event can be used to tweak or completely override

this collection.

By default, the diagram will be created from all of the Workflow's Item Groups excluding the

following:

• Deleted Item Groups

• Skipped Item Groups

o Unless the Workflow Type is configured to Show Skipped Item Groups or the Skipped

Item Group contains one or more completed Workflow Items.

• Item Groups flagged as 'Not Applicable'

o Unless the Item Group contains one or more completed Workflow Items.

The diagram will look something like this:

And, if customised (via the 'GetTrainStops' event) to include Actions, something like this:

WARNING: The built-in HTML generated for the Train Stops diagram is only compatible with

Internet Explorer 10 and above.

The finWorkflowTrainStops object has the following properties to tweak the diagram:

• BulletShape

o Determines the bullet shape, either:

 Default (Square)

 Square

 Circle

o NOTE: Can be overridden on each Train Stop.

• BulletSize

o The Bullet Size in pixels (use an odd number so the 1 pixel joiner line is correctly

centred) or zero to use the default (13 pixels).

• JoinerHalfSize

o The half size of the Bullet Joiner lines in pixels or zero to use the default (27 pixels).

o The 'half size' is specified since the joiner line consists of two parts; one part that

appears before the bullet and one part that appears after the bullet.

Tweaking these allows the following types of style changes which, depending on how the

Workflow is configured, may make for a clearer diagram:

Page 14 of 95

The finWorkflowTrainStop object has the following properties to tweak a particular Train

Stop in the diagram:

• BulletColour

o A custom HTML colour for the bullet or a blank String to use the automatically

determined colour.

• BulletShape

o Determines the bullet shape, either:

 Default (as defined on the Train Stops collection)

 Square

 Circle

• BulletStyle

o The underlying bullet style, either:

 Automatic (determined from the Workflow Item Group)

 Completed

 Current

 Future

 SkippedAll

 SkippedPartial

• CaptionColour

o A custom HTML colour for the caption or a blank String to use the automatically

determined colour.

• JoinerHalfSize

o The half size of the Bullet Joiner line in pixels or zero to use the value specified on the

Train Stops collection.

An example of tweaking these properties is shown below:

NOTE: To generate a totally customised Train Stops diagram, a Script must be defined under

Global Settings, Summary Pages to override Standard Summary Page Blocks and then override

the Workflow_TrainStops method.

Page 15 of 95

Workflow Type Script
Much of the processing of Version 2 type Workflows occurs via a Workflow Executor.

The following events can access the Workflow Executor:

• AfterInitialise

• AfterItemGroupAdd

• BeforeProcess

• BeforeItemAction

• AfterItemAction

• BeforeItemReset

• AfterItemReset

The template Script code assigns a reference to the Workflow Executor, i.e.:

Private mWorkflowExecutor As finWorkflowExecutor

Public Function Main(workflow As finWorkflow,

 eventId As String,

 ByRef eventHandled As Boolean,

 workflowItem As finWorkflowItem,

 otherParameters As ISKeyValueList) As Boolean

 Dim Outcome As String

 Dim StatusNotes As String

 ' Assume Success

 Main = True

 ' Get Workflow Executor

 mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"),

finWorkflowExecutor)

End Function

NOTE: The Workflow Executor is used to perform much of the functionality that Version 1 type

Workflows used in finWorkflowFunctions (finBL.WorkflowFunctions).

The Workflow Executor contains many helper functions to make it easy to complete, skip, or

make items 'Not Applicable'. Many of these methods allows different ways of identifying a

Workflow Item, e.g.:

• WorkflowExecutor.ItemSetStatusSkipped

• WorkflowExecutor.ItemSetStatusSkippedByItemId

• WorkflowExecutor.ItemSetStatusSkippedByOriginalItemId

NOTE: When identifying a Workflow Item by its Item Id or Original Item Id, only the first

Workflow Item with a matching Id in the current Item Group is returned or used.

When a Workflow Item's Status has been updated from one of the following Workflow Executor

helper methods, is StatusUpdatedFromScript property will be set to True:

• CompleteItem

• CompleteCheckListItem

Page 16 of 95

• ItemSetStatusNotApplicable

• ItemSetStatusSkipped

The Summary Page Block displaying Audit information for the Workflow Item will indicate this,

as will an overlay on the Workflow Item's Status Icon, e.g.:

Resetting a Workflow Item will record a 'StatusUpdatedFromScript' entry if the item being

reset had had its Status updated from a Script.

Page 17 of 95

Completing Workflow Items from Script Code
Unlike Version 1 type Workflows, Actioning of Workflow Items from a Workflow Type Script is

restricted.

The following methods of the Workflow Executor allow Workflow Items to be completed, i.e.,

their Status and Outcome to be set.

• CompleteItem

o Complete a Workflow Item.

• CompleteItemByItemId

o Complete a Workflow Item using the Item's Id to identify it.

• CompleteItemByOriginalItemId

o Complete a Workflow Item using the Item's Original Id to identify it.

• CompleteCheckListItem

o Complete a Workflow Item.

• CompleteCheckListItemByItemId

o Complete a Workflow Item using the Item's Id to identify it.

• CompleteCheckListItemByOriginalItemId

o Complete a Workflow Item using the Item's Original Id to identify it.

• CompleteOpen

o Complete any currently 'Open' item (e.g., a Wait).

o This will not return an error (i.e., False) if there is no 'Open' item.

WARNING: None of the above methods actually action the Workflow Item, call Script events

and, in the case of Item types defining Outcomes (e.g., Questions), none of the Outcome

Actions will be performed.

This is a major change from Version 1 type Workflows and means that generally,

Version 2 type Workflows will require a different structure.

See the next section on 'Auto Actioning' Workflow Items.

Page 18 of 95

Auto Actioning Workflow Items from Script Code
As seen in the previous section, completing Workflow Items from Script code does not actually

action the item, it simply sets the item's status and, optionally, outcome.

Workflow Items can however be flagged to 'Auto Action' from Script code. This will cause an

item to be actioned as if the User is manually actioning it.

The process is as follows:

• The Workflow Type Script uses one of the AutoActionItem methods to set the Workflow

Item's AutoAction flag and details (e.g., the desired outcome).

o NOTE: The Workflow Item is not actually actioned at this point; its status will still be 'Not

Started'.

• From the Workflows form, the User will be unable to action any Workflow Items until the

Workflow is processed if the current Item Group has one or more incomplete 'Auto Action'

items.

o Generally, the User will never be in this position since 'Auto Action' items will be

processed automatically. Exceptions are:

 Where an Item Group has been manually added by the User from the Items page of

the Workflows form.

 Where the User has added a new Workflow but NOT processed it and either the

'AfterInitialise' or 'AfterItemGroupAdd' events have set one or more items to 'Auto

Action'.

 Where items in future groups have been set to 'Auto Action'.

The following methods of the Workflow Executor allow Workflow Items to be flagged to 'Auto

Action':

• AutoActionItem

o Sets the Workflow Item's Auto Action properties.

• AutoActionItemByItemId

o Sets the Workflow Item's Auto Action properties using the Item's Id to identify it.

• AutoActionItemByOriginalItemId

o Sets the Workflow Item's Auto Action properties using the Item's Original Id to identify it.

WARNING: Preventing the User from actioning items if 'Auto Action' items exist in the group

is achieved via the Workflow Summary Script and is only supported in the Summary Page

(Version 2) Script.

Page 19 of 95

CompleteItem versus AutoActionItem
Both the CompleteItem and AutoActionItem methods complete an item, i.e., set its status to

complete and set its outcome (where applicable).

The main differences are:

• CompleteItem sets the Workflow's status and outcome immediately; AutoActionItem does

not.

• CompleteItem does NOT perform any of the Workflow Items actions or process the item in

any way, i.e., NONE OF THE FOLLOWING WILL TAKE PLACE:

o Updates to the Workflow's Flag Colour.

o Updates to Account Monitor Categories.

o Script events such as BeforeItemAction and AfterItemAction.

• AutoActionItem peforms all Workflow Item actions as if the item were being actioned by

the User, therefore all of the following will take place:

o Updates to the Workflow's Flag Colour.

o Updates to Account Monitor Categories.

o Script events such as BeforeItemAction and AfterItemAction.

NOTE: Because AutoActionItem does not action the Workflow Item immediately, it can be

used to flag Workflow Items that make Web Service calls (e.g., perform a Bank Account

Enquiry request) to be actioned automatically, thereby avoiding any database transaction

nesting issues associated with Version 1 type Workflows.

Page 20 of 95

BeforeItemAction versus AfterItemAction
Both the BeforeItemAction and AfterItemAction events run when actioning a Workflow

Item.

The main uses and things to be aware of are:

• BeforeItemAction

o This runs before the Workflow Item has been actioned. Therefore, common uses might

be:

 Prevent the item from being run (return False).

 Completing an item automatically.

• AfterItemAction

o This runs after the Workflow Item has been actioned.

 Therefore, if using the workflow.GetCurrentItem() method, the finWorkflowItem

object returned WILL NOT BE THE SAME AS the workflowItem parameter passed to

this event.

 Returning False will NOT prevent the item from being actioned since it has already

been actioned.

o Use with caution if this is being used by the last item in a group since the group may well

have been closed by the time this event occurs meaning that no other changes can be

made to it.

Page 21 of 95

Automatic Questions and Item Groups
In Version 2 type Workflows, Question and Item Groups can be flagged as 'automatic'.

These are then treated like any other 'automatic' item, e.g., when they become current (i.e., in

the case of Item Groups, all other items in the group have been actioned), the

'BeforeItemAction' event will be fired and the Script can then be used to determine the

outcome.

NOTE: Limited automatic completion of Item Groups was supported in Version 1 Workflows via

the use of special tags, e.g. '[All Success]' which are available from the Outcome dropdown in

the Workflow Item Outcome wizard.

This functionality is still supported in Version 2 Workflows and, as per Version 1 Workflows,

items using these tags should not be flagged as 'automatic'.

See the BeforeItemAction section for a code example.

If the Script receives an Outcome parameter, this implies that the Workflow Item is being

actioned manually be the User (or some other processes). Therefore, the following code check

allows you to determine whether to attempt to automatically set the Outcome:

Case "BeforeItemAction"

 Outcome = otherParameters.GetString("Outcome")

 If Len(Outcome) = 0 Then

 ' Automatically determine the outcome

 otherParameters.SetString("Outcome", "My Outcome Value")

 Else

 ' Do nothing since this item is being actioned by the User

 End If

As per actioning any other type of Workflow Item, the 'AfterItemAction' event will also be fired

(providing an outcome has been specified in the 'BeforeItemAction' event).

NOTE: If the Script does not return an outcome by doing

otherParameters.SetString("Outcome", "My Outcome Value") then the Question or Item

Group will not be completed but can still be answered manually be the User.

Page 22 of 95

Script Events
Workflow Types support many Script events which are described in this section.

The following events are new to Version 2 type Workflows:

• AfterItemGroupAdd

• GetTrainStops

o This event is also available to Version 1 type Workflows.

Page 23 of 95

AfterInitialise

This event is called when the Workflow is first initialised from the Workflow Type but has not

yet been saved to the database.

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Prevent the workflow from being created (e.g., the Account is in a state that does not make

sense to this Workflow, e.g.:

o Main = False
finBL.Error.ErrorBegin("Workflow cannot be used for Deposits.")

• Add Items, e.g.:

o Workflow.GetCurrentItemGroup().Items.AddDecisionCard.AddDecisionCard()

• Add Item Groups

o Workflow.ItemGroups.AddItemGroup("Description", "ItemId")

or

WorkflowItem = Workflow.ItemGroups.CreateWorkflowItem()

Workflow.ItemGroups.Insert(0, WorkflowItem)

• Skip Items, e.g.:

o WorkflowExecutor.ItemSetStatusSkipped

• Set Items to Not Applicable, e.g.:

o WorkflowExecutor.ItemSetStatusNotApplicable

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

NOTE: Setting the Workflow Type's 'Initialisation' property to 'None' on the 'New Workflows'

page allows the Script to completely handle the creation of Item Groups and Items.

Page 24 of 95

AfterItemGroupAdd

This event is called when an Item Group is added to the Workflow.

NOTE: This event CAN access the Workflow Executor object.

This event is called for each Item Group that is added, e.g., if an Item Group is set to repeat

for each Account Client, the event will be called for each group.

NOTE: During initialisation, this event will be called once for each Item Group added to the

Workflow (based on the Initialisation option on the 'New Workflows' page of the Workflow

Types form) and will occur before the AfterInitialise event.

The workflowItem event parameter is a reference to the newly added Item Group.

Common uses are:

• Prevent the User from manually adding an Item Group (from the Workflows form, Items

page), e.g.:

o otherParameters.GetBoolean("UserInvoked") = True

• Update the Item Group's description

• Automatically complete items, e.g.:

o WorkflowExecutor.CompleteItem

o WorkflowExecutor.CompleteItemByItemId (see warning below)

o WorkflowExecutor.CompleteItemByOriginalItemId (see warning below)

• Skip Items, e.g.:

o WorkflowExecutor.ItemSetStatusSkipped

o WorkflowExecutor.ItemSetStatusSkippedByItemId (see warning below)

o WorkflowExecutor.ItemSetStatusSkippedByOriginalItemId (see warning below)

• Set Items to Not Applicable, e.g.:

o WorkflowExecutor.ItemSetStatusNotApplicable

o WorkflowExecutor.ItemSetStatusNotApplicableByItemId (see warning below)

o WorkflowExecutor.ItemSetStatusNotApplicableByOriginalItemId (see warning below)

WARNING: Do not assume that the Workflow's Current Item Group is the Item Group that

has just been added, e.g., never use the 'ByItemId' or 'ByOriginalItemId' helper methods

unless you are absolutely sure that the Item Group being added is now the Current Item

Group.

Use the 'AfterItemGroupBegin' event if you need to ensure that the various helper method that

work on the current Item Group will work correctly.

If you are unsure that the new Item Group is going to be the Current Item Group, instead of

referencing Workflow Items via the Workflow Executor's helper methods, e.g.:

' Handle Events

Select Case eventId

 Case "AfterItemGroupAdd"

 Main = workflowExecutor.ItemSetStatusNotApplicableByOriginalItemId("TEST", True)

End Select

Use the Items collection of the new Item Group, e.g.:

Page 25 of 95

' Handle Events

Select Case eventId

 Case "AfterItemGroupAdd"

 Main =

workflowExecutor.ItemSetStatusNotApplicable(workflowItem.Items.ItemByOriginalId("TEST"), True)

End Select

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

This example updates the Item Group's description to the Applicant's name (assuming the

Item Group is set to repeat per Applicant):

Dim AccountAppApplicant As finAccountAppApplicant

Dim SourceObject As Object

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "AfterItemGroupAdd"

 ' Get Workflow Item's Applicant

 Main = workflowItem.GetSourceObject(SourceObject)

 ' Update Description

 If Main Then

 AccountAppApplicant = DirectCast(SourceObject, finAccountAppApplicant)

 workflowItem.Description = "Group for Applicant " & AccountAppApplicant.Name

 End If

End Select

NOTE: The above can also be achieved using the [ApplicantName] tag in the Item Group's

description.

Page 26 of 95

BeforeProcess

This event is called before the Workflow is processed (e.g., from the Workflows form or from

the Account Processes wizard).

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Prevent the Workflow from being processed, e.g.:

o The User does not have permission to process the Workflow.

• Inform finPOWER Connect that processing has taken place (set the eventHandled

parameter to True). This allows:

o The Script to handle the entire Workflow process, e.g., a Workflow could be defined that

contains no Workflow Items but simply uses a Script to take it through various different

states which could be stored in the Workflow's UserData.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

Page 27 of 95

AfterItemGroupBegin

This event is called once, when an Item Group is first started, e.g., the Workflow is processed

or a Workflow Item is being actioned and the current Item Group has not yet had this event

called.

The workflowItem event parameter is a reference to Workflow's Current Item Group.

NOTE: Using this event instead of the 'AfterItemGroupAdd' event ensures that any of the

Workflow Executor's helper methods that act on the current Item Group (e.g.,

CompleteItemById) will work as execpted.

Unlike the 'AfterItemGroupAdd' event, this event is run at the point in time at which this Item

Group becomes the current Item Group; the 'AfterItemGroupAdd' event occurs as soon as the

Item Group is added to the Workflow which, depending on how the Workflow Type is

configured, may be when the Workflow is first created.

Common uses are:

• Prevent the User from manually adding an Item Group (from the Workflows form, Items

page), e.g.:

o otherParameters.GetBoolean("UserInvoked") = True

• Update the Item Group's description

• Automatically complete items, e.g.:

o WorkflowExecutor.CompleteItem

o WorkflowExecutor.CompleteItemByItemId

o WorkflowExecutor.CompleteItemByOriginalItemId

• Skip Items, e.g.:

o WorkflowExecutor.ItemSetStatusSkipped

o WorkflowExecutor.ItemSetStatusSkippedByItemId

o WorkflowExecutor.ItemSetStatusSkippedByOriginalItemId

• Set Items to Not Applicable, e.g.:

o WorkflowExecutor.ItemSetStatusNotApplicable

o WorkflowExecutor.ItemSetStatusNotApplicableByItemId

o WorkflowExecutor.ItemSetStatusNotApplicableByOriginalItemId

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

This example sets a Workflow Item in the Item Group to 'Not Applicable':

Dim AccountAppApplicant As finAccountAppApplicant

Dim SourceObject As Object

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "AfterItemGroupBegin"

 ' Make a WorkflowItem 'Not Applicable'

 Main = workflowExecutor.ItemSetStatusNotApplicableByOriginalItemId("TEST", True)

End Select

Page 28 of 95

NOTE: The above can also be achieved using the [ApplicantName] tag in the Item Group's

description.

Page 29 of 95

BeforeItemAction

This event is called before actioning an item.

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Prevent an item from being actioned, e.g.:

o The User does not have permission.

o A previous item needs actioning before this item can be actioned.

• Perform actions that could fail (and should therefore fail the item before its status has been

set), e.g., adding a Transaction to an Account.

• Update the Outcome or set the Status Notes for the item being actioned.

o As of Version 2, this includes automatic 'Question' and 'Item Group' type items.

• Perform calls to external Web Services, e.g., to perform a Credit Enquiry.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

This event can be used to automatically set the outcome of a 'Question' type Workflow Item

(as of Version 2, 'Question' type items can be automatic):

Case "BeforeItemAction"

 Outcome = otherParameters.GetString("Outcome")

 StatusNotes = otherParameters.GetString("StatusNotes")

 If workflowItem.Automatic AndAlso workflowItem.ItemIdOriginal = "OVER20" AndAlso

 Len(Outcome) = 0 Then

 ' Automatically determine if Applicant is over 20

 If workflowItem.SourceObjectType = isefinWorkflowItemSourceObjectType.AccountAppApplicant Then

 AccountAppApplicant = workflow.AccountApp.Applicants.ItemByPk(workflowItem.SourceObjectPk)

 If AccountAppApplicant.Age >= 20 Then

 otherParameters.SetString("Outcome", "Yes")

 Else

 otherParameters.SetString("Outcome", "No")

 otherParameters.SetString("StatusNotes", "Applicant is " & AccountAppApplicant.Age)

 End If

 Else

 ' Item not configured to repeat per Applicant

 End If

 End If

NOTE: The check Len(Outcome) = 0 is applied since the User might be manually actioning

this item in which case the outcome will have already been specified.

The table below notes points of interest for different item types when using this event:

Item Type Details

None

Page 30 of 95

WARNING: Do not complete the current item group from this event (e.g., using

finWorkflowExecutor.CompleteCurrentItemGroup) since it will cause the current item to be

skipped.

Page 31 of 95

CouldActionItem

This event applies only to Send Document type Workflow items.

NOTE: This event CANNOT access the Workflow Executor object.

This event is called before attempting to action a 'Send Document' type Item. Common uses

are:

• Check that all required recipients are able to receive the document, e.g., they have a postal

address recorded.

o Do otherParameters.SetBoolean("CouldAction", False) to indicate this item could

not be processed. You can also record a reason

otherParameters.SetString("ActionNotes", "Reason could not action").

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

• Update the Workflow in any way (this event is just an enquiry and should therefore not

cause any changes to occur.

Page 32 of 95

AfterItemAction

This event is called after actioning a Workflow Item.

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Complete other, related Workflow Items.

o E.g., using the CompleteItem or AutoActionItem methods.

• Skip or set the status of items to 'Not Applicable' based on the Outcome of the item being

actioned.

• Add another Item Group based on the Outcome of the item being actioned.

• If the Workflow Item that was actioned was an Item Group then:

o Configure the new current Item Group (WorkflowExecutor.CurrentItemGroup), e.g., set

the status of items to 'Not Applicable'.

o Add a new Item Group (WorkflowExecutor.AddItemGroupFromWorkflowType).

o Dynamically create and populate a new Item Group.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

WARNING: At the point at which this event is called, the Workflow's 'Current' Item will be the

item after the Item that has just been actioned.

The table below notes points of interest for different item types when using this event:

Item Type Details

Decision Card The following special 'Other Parameters' are available:

• DecisionOutcomeLog

o The log object recording the Decision Outcome, e.g., a

finAccountLog object.

o The Script may wish to update the log's automatically

generated subject, e.g.:

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "DC1" Then

 With

DirectCast(otherParameters.GetObject("DecisionOutcomeLog"),

finAccountAppLog)

 .Subject = "A custom decision outcome"

 Main = .Save()

 End With

 End If

Log

Outgoing Communication

The following special 'Other Parameters' are available:

• Log

o The log that was created, e.g., a finAccountLog object.

o The Script may wish to update the log's automatically

generated subject, e.g.:

Page 33 of 95

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "LOG" Then

 With DirectCast(otherParameters.GetObject("Log"),

finAccountAppLog)

 .Subject = "A custom decision outcome"

 Main = .Save()

 End With

 End If

Page 34 of 95

BeforeItemReset

This event is called before resetting a Workflow Item.

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Prevent the Workflow Item from being reset.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

Page 35 of 95

AfterItemReset

This event is called before resetting a Workflow Item.

NOTE: This event CAN access the Workflow Executor object.

Common uses are:

• Prevent the Workflow Item from being reset.

o Typically, the 'BeforeItemReset' event would be used.

• Undo certain actions that are related to the Workflow Item, e.g.:

o Delete a Log (or change its Notes) that was created by the Script upon first actioning this

Workflow Item.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

NOTE: Any unpublished Document Logs attached to a Workflow Item that is reset will

automatically have their Publish Status set to 'Not Issued'.

Page 36 of 95

BeforeClose

This event is called before closing a Workflow.

NOTE: This event CANNOT access the Workflow Executor object.

Common uses are:

• Prevent the Workflow from being closed.

o Ensure that only a User with a certain permission can close the Workflow.

• Undo certain actions that are related to the Workflow if it is being cancelled, e.g.:

o Delete a Log (or change its Notes) that was created by the Script.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

Page 37 of 95

CanActionItem

This event is called to see if the current User is allowed to action a Workflow Item.

NOTE: This event CANNOT access the Workflow Executor object.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

• Update the Workflow in any way (this event is just an enquiry and should therefore not

cause any changes to occur.

NOTE: The finWorkflowItem object has a CanAction method. This method performs various

checks and this Script event is only called providing all of the built-in checks (e.g., permission

keys and the item's state) are passed.

The following example prevents an item from being actioned:

Case "CanActionItem"

 If workflowItem.ItemIdOriginal = "DC" Then

 If finBL.CurrentUser.UserId <> "XXX" Then

 otherParameters.SetBoolean("CanAction", False)

 otherParameters.SetString("Message", "Only User 'XXX' can action this item.")

 End If

 End If

The following example updates the message shown due to an item not being able to be

actioned, regardless of whether it could be actioned or not:

Case "CanActionItem"

 If workflowItem.ItemIdOriginal = "DC" Then

 If workflowItem.DecisionCardPk = 0 Then

 otherParameters.SetString("Message", "Your manager must allocate a Decision Card.")

 End If

 End If

Page 38 of 95

BeforeAccountDecline

This event is called for Account type Workflows only and is called when a Refinanced Account

is being declined.

NOTE: This event CANNOT access the Workflow Executor object.

This is used instead of the 'BeforeClose' Workflow event and common uses are:

• Prevent the Workflow from being closed and therefore the Refinanced Account from being

declined.

o It may be that the Workflow should be completed (or cancelled) manually by the User

before attempting to decline the Refinanced Account.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

Page 39 of 95

UpdateDocumentsList

This event is called to update the list of Documents displayed to the User in the Action

Workflows wizard.

NOTE: This event CANNOT access the Workflow Executor object.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

Page 40 of 95

GetTrainStops

This event is called to update the list of Train Stops generated when calling the

finWorkflow.GetTrainStops method.

NOTE: This event CANNOT access the Workflow Executor object.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

This event can access the Train Stops and either update existing items, add new ones or clear

the existing collection and generate its own items.

The following example generates a completely custom list of Train Stops (unrelated to any

Workflow Item Groups) and flags 'Stop B' as the current Train Stop. It also sets the Application

Shortcut to run when 'Stop C' is clicked:

Case "GetTrainStops"

 Dim WorkflowTrainStops As finWorkflowTrainStops

 ' Get Train Stops

 WorkflowTrainStops = DirectCast(otherParameters.GetObject("TrainStops"), finWorkflowTrainStops)

 ' Overwrite with custom Train Stops

 With WorkflowTrainStops

 .Clear()

 .AddCustom("Stop A", False)

 .AddCustom("Stop B", True)

 .AddCustom("Stop C", False,

 "app://FormShow?form=Workflows&id=" & finBL.UrlEncode(workflow.WorkflowId))

 End With

The next example appends an Actions List to a Train Stop if it is represented by Item Group

'TEST'. In this example, the Actions are shortcuts to setting the outcome of an Item with the

code 'TS' which exists within the Item Group:

Case "GetTrainStops"

 Dim ApplicationShortcutUrl As String

 Dim WorkflowItemGroup As finWorkflowItem

 Dim WorkflowItemTS As finWorkflowItem

 Dim WorkflowItemOutcomeItem As finWorkflowItemOutcomeItem

 Dim WorkflowTrainStop As finWorkflowTrainStop

 Dim WorkflowTrainStops As finWorkflowTrainStops

 ' Get Train Stops

 WorkflowTrainStops = DirectCast(otherParameters.GetObject("TrainStops"), finWorkflowTrainStops)

 ' Add custom Actions

 If workflow.Status = isefinWorkflowStatus.Open Then

 For Each WorkflowTrainStop In WorkflowTrainStops

 ' Get Item Group

 WorkflowItemGroup = WorkflowTrainStop.WorkflowItemGroup

 ' Add Actions (list outcomes from Item 'TS')

 If WorkflowItemGroup.IsCurrentItemGroup() Then

 WorkflowItemTS = WorkflowItemGroup.Items.ItemByOriginalId("TS")

 If WorkflowItemTS IsNot Nothing AndAlso

 WorkflowItemTS.Status = isefinWorkflowItemStatus.NotStarted Then

 With WorkflowTrainStop.ActionsMenu.MenuItems

 ' Clear existing Actions (just in case)

 .Clear()

 ' Add one Action per Outcome

 For Each WorkflowItemOutcomeItem In WorkflowItemTS.OutcomeItems

 ' Create Action URL

 ApplicationShortcutUrl =

String.Format("app://FormAction?action=WorkflowItemSetOutcome&workflow={0}&itemPk={1}&outcome={2}"

, workflow.Pk, WorkflowItemTS.Pk, finBL.UrlEncode(WorkflowItemOutcomeItem.Outcome))

Page 41 of 95

 ' Add

 .AddItem("", WorkflowItemOutcomeItem.OutcomeDescriptionResolved, "",

 ApplicationShortcutUrl)

 Next

 End With

 End If

 End If

 Next

 End If

The above example loops through the Outcomes defined in Workflow Item 'TS' (providing it

has not been actioned) and adds corresponding Train Stop Actions; one per Outcome. This can

be achieved more simply using one of the helper methods such as

ActionsFromWorkflowItemOutcomesByItemId, e.g.:

Case "GetTrainStops"

 Dim WorkflowTrainStop As finWorkflowTrainStop

 Dim WorkflowTrainStops As finWorkflowTrainStops

 ' Get Train Stops

 WorkflowTrainStops = DirectCast(otherParameters.GetObject("TrainStops"), finWorkflowTrainStops)

 ' Add custom Actions

 If workflow.Status = isefinWorkflowStatus.Open Then

 For Each WorkflowTrainStop In WorkflowTrainStops

 ' Add Actions (list outcomes from Item 'TS')

 If WorkflowTrainStop.WorkflowItemGroup.IsCurrentItemGroup() Then

 WorkflowTrainStop.ActionsMenuFromWorkflowItemOutcomesByOriginalItemId("TS")

 End If

 Next

 End If

This will create a Train Stops diagram something like this:

NOTE: In the above example, if you only wanted to include certain outcomes from item 'TS',

you can specify a comma-separated list of outcomes, e.g., if the item contains three outcomes

('Yes', 'No', 'Maybe') but you only want to include 'Yes' and 'No':

WorkflowTrainStop.ActionsMenuFromWorkflowItemOutcomesByOriginalItemId("TS", "Yes,No")

You can also override the overall bullet size and shape (each Train Stop can also define a bullet

shape so the diagram can have mixed bullet shapes), e.g.:

Case "GetTrainStops"

 Dim WorkflowTrainStops As finWorkflowTrainStops

 ' Get Train Stops

 WorkflowTrainStops = DirectCast(otherParameters.GetObject("TrainStops"), finWorkflowTrainStops)

 ' Customise

 WorkflowTrainStops.BulletShape = isefinWorkflowTrainStopBulletShape.Circle

 WorkflowTrainStops.BulletSize = 21

This will create a Train Stops diagram something like this:

Page 42 of 95

GetWorkflowItemUserDataSummary

This event is called to to allow a Workflow Item to produce a customised summary of its User

Data.

NEVER do the following from this event:

• Save the Workflow

• Refresh the Workflow

The finWorkflowItem object has a GetUserDataAsSummaryTables method. This is called from

the built-in Workflow Summary page for any Workflow Items with a status of either 'Open' or

'Complete'.

By default, this function will only return a summary if the Workflow Item is configured to have

a 'Notes Entry' method of either 'Parameters (User Defined Workflow)' or 'Parameters (User

Defined Workflow)' since it can use the defined Parameters to produce a summary.

Using the Script event, you can produce a customised summary, typically of the Workflow

Item's User Data but the summary can include any information.

NOTE: Customised suummaries can only be generates as a ISSummaryTables object, not as

directly generated HTML.

The following example generates a customised summary for a Workflow Item:

Case "GetWorkflowItemUserDataSummary"

 Dim SummaryTable As ISSummaryTable

 Dim SummaryTables As ISSummaryTables

 Select Case workflowItem.ItemIdOriginal

 Case "CHK1"

 ' Initialise

 SummaryTables = finBL.CreateSummaryTables()

 SummaryTable = finBL.CreateSummaryTable()

 ' Build Summary

 With SummaryTable

 .TableClass = iseSummaryTableClass.Information

 .Columns.AddText(16).NoBreakChars = 16

 .Columns.AddText()

 With .Rows

 .AddSectionHeading2("My Custom Script Summary")

 .AddCaptionText("Custom Value:", workflowItem.UserData.GetString("CustomValue",

"[N/A]"))

 End With

 .TextAfter = "{{info|Summary generated from Workflow Type Script.}}"

 End With

 SummaryTables.Add("Main", SummaryTable)

 ' Handled

 otherParameters.SetObject("SummaryTables", SummaryTables)

 eventHandled = True

 End Select

NOTE: The Script must set eventHandled to True and add a 'SummaryTables' entry into the

otherParameters.

The KeyValueListToSummaryTables helper method can be used if you simply want to display

all of the Workflow Item's User Data, e.g.:

Select Case workflowItem.ItemIdOriginal

 Case "CHK1"

 ' Handled

 otherParameters.SetObject("SummaryTables",

Page 43 of 95

 finBL.Utilities.KeyValueListToSummaryTables(workflowItem.UserData))

 eventHandled = True

End Select

Page 44 of 95

GetWorkflowUserDataSummary

This event is called to to allow a Workflow to produce a customised summary of its User Data.

NOTE: This event CANNOT access the Workflow Executor object.

This event is identical to the 'GetWorkflowItemUserDataSummary' but targets the Workflow

instead of a Workflow Item.

The following example generates a customised summary for a Workflow:

Case "GetWorkflowUserDataSummary"

 ' Get a User Data summary for Workfow

 Dim SummaryTable As ISSummaryTable

 Dim SummaryTables As ISSummaryTables

 ' Initialise

 SummaryTables = finBL.CreateSummaryTables()

 SummaryTable = finBL.CreateSummaryTable()

 ' Build Summary

 With SummaryTable

 .TableClass = iseSummaryTableClass.Information

 .Columns.AddText(16).NoBreakChars = 16

 .Columns.AddText()

 With .Rows

 .AddSectionHeading2("My Custom Script Summary")

 .AddCaptionText("Custom Value:", workflow.UserData.GetString("CustomValue", "[not set]"))

 End With

 .TextAfter = "{{info|Summary generated from Workflow Type Script.}}"

 End With

 SummaryTables.Add("Main", SummaryTable)

 ' Handled

 otherParameters.SetObject("SummaryTables", SummaryTables)

 eventHandled = True

WARNING: By default, the built-in Workflow Summary page will not show Workflow User

Data. The 'ShowUserDefined' constant must be set to True.

Page 45 of 95

Script Responsibilities
For execution of a Workflow to work correctly, a Workflow Type Script has certain

responsibilities. These are outlined in this section.

Recording Logs

Any Logs created as a result of processing a Workflow or actioning a Workflow Item should be

recorded.

This Logs are then available for inspection (e.g., to decide what to publish) once processing is

complete.

The finWorkflowExecutor object has the following methods to do this:

• CreatedLogsAddAccount

• CreatedLogsAddAccountApp

• CreatedLogsAddClient

The collection of Logs created is available via the finWorkflowExecutor.CreatedLogs

collection.

NOTE: The finWorkflowExecutorCreatedLog has a Log property that is an Object. The object

type varies depending on the LogClass property, e.g., it may be a finAccountLog or a

finClientLog.

Recording New Workflows

New Workflows can be created automatically by actioning Workflow Items (Items that support

the concept of 'Outcomes' all new Workflows to be created).

Any Workflows created as a result of Script code should also be recorded. The

finWorkflowExecutor object has the following method to do this:

• CreatedWorkflowsAdd

The new Workflows are available via the finWorkflowExecutor.CreatedWorkflows collection.

When adding a Workflow to this collection, a toProcess flag can be specified. If this is True

then at the end of processing the current Workflow, any Workflows in this collection that are

flagged to be processed will also be processed.

Executing External Web Services

Calls to external Web Services, e.g., to perform a Veda Credit Enquiry, cannot be executed

within a database transaction for the following reasons:

• If the transaction is rolled back, any auditing information recorded for the Web Service call

will be lost.

• Web Service calls can sometimes be slow. Executing one within a transaction may result in

locking occurring on the database and affect performance for other Users.

Therefore, if a Web Service type Workflow Item is actioned, the following takes place:

• A check will be made to ensure that no "outer" database transaction exists and if it does:

o If the User is directly actioning this Workflow Item via the

finWorkflowExecutor.ExecuteWorkflowItemPerformAction method, this method will

fail and return an appropriate error message.

o If this Workflow Item is being actioned automatically, e.g., because the Workflow is being

processed of a prior Workflow Item has been actioned, no error will occur but processing

Page 46 of 95

will be halted and the finWorkflowExecutor.ExecuteWorkflowItemPerformAction

property will be set to True.

• The current database transaction will be committed.

• The external Web Service call will be made.

• A new database transaction will be started.

o The new transaction is started regardless of whether the Web Service call was successful

or not.

Any Workflow Type Script code wishing to perform a call to an external Web Service should:

• Perform the call in the 'BeforeItemAction' event.

• Check that a Web Service call can be made.

• Use the special WebServiceCallBegin and WebServiceCallEnd methods of the Workflow

Executor either side of the Web Service call.

The following, stripped down, code sample shows the above in action and is taken from the

Workflow Type Script Examples section:

Dim Client As finClient

Dim CreditEnquiryRequest As ISCreditEnquiryRequest

Dim CreditEnquiryRequestVeda As ISCreditEnquiryRequest_VedaXmlNZ_IndividualEnquiry

Dim CreditEnquiryResponse As ISCreditEnquiryResponse

Dim CreditEnquiryResponseVeda As ISCreditEnquiryResponse_VedaXmlNZ_Individual

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CE" Then

 ' Validate

 If Not mWorkflowExecutor.CanPerformWebServiceCall() Then

 Main = False

 finBL.Error.ErrorBegin("Cannot perform Web Service call.")

 End If

 ' Execute Request

 If Main Then

 mWorkflowExecutor.WebServiceCallBegin()

 Main = finBL.CreditBureau.ExecuteCreditEnquiry(CreditEnquiryRequestVeda,

 CreditEnquiryResponse, Nothing, True,

 workflow.Pk, workflowItem.pk)

 mWorkflowExecutor.WebServiceCallEnd()

 End If

End Select

WARNING: The WebServiceCallBegin method will commit the current database transaction.

It is the Script's responsibility to ensure it is written in such a way that this does not cause any

issues.

The Database Transactions section discusses database transactions in more detail.

Page 47 of 95

Database Transactions
Each Workflow Item is actioned within its own database transaction.

This means that if actioning of the item fails, the database transaction will be rolled back,

thereby undoing any database changes made.

If a database transaction has already been started by another process (e.g., the

finAccountPayArrangementAdd object or a Script), the Workflow will be executed within an

"outer" database transaction meaning:

• If Workflow Items are actioned and then the outer database transaction is rolled back, any

changes made to the Workflow will be lost.

• Any Workflow Items (or code within the Workflow Type Script) will be unable to make

external Web Service calls (e.g., to the New Zealand PPSR G2B) since these are not

permitted within an outer database transaction.

o This is discussed in the Script Responsibilities, Executing External Web Services section.

NOTE: When running from the finPOWER Connect User Interface, Workflows are not processed

within an outer database transaction.

However, if a Workflow is processed as a result of adding an Account Payment Arrangement

(via the finAccountPayArrangementAdd object), the execution of the Workflow will occur

within an outer database transaction.

If functionality within a Workflow Type Script requires that there is no outer transaction (e.g.,

the Script wants to perform a Veda Credit Enquiry), the Script can check and fail actioning of

the item in the following way:

' Handle Events

Select Case eventId

 Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CE" Then

 ' Validate

 If Not mWorkflowExecutor.CanPerformWebServiceCall() Then

 Main = False

 finBL.Error.ErrorBegin("Cannot perform Web Service call.")

 End If

 End If

End Select

Page 48 of 95

Workflow Type Script Examples
Script samples are available in the Script Events section.

This section gives more task-specific examples.

Set Workflow Items to 'Not Applicable' When Initialising
This sample does the following when the Workflow is first initialised:

• Sets the 'PPSRSEARCH' Item in the current (i.e., first in this case) Item Group to 'Not

Applicable'.

Case "AfterInitialise"

 If Main Then Main = mWorkflowExecutor.ItemSetStatusNotApplicableByItemId("PPSRSEARCH"), True)

Note the following:

• Helper methods allow the 'Not Applicable' state of an Item to be setting using one of the

following methods:

o ItemSetStatusNotApplicable

o ItemSetStatusNotApplicableByItemId

o ItemSetStatusNotApplicableByOriginalItemId

Page 49 of 95

Create New Item Group with Items from Script
This sample does the following when the Workflow is first initialised (although the code could

just as easily be used in the 'AfterItemAction' event:

• Adds a new Item Group

o Can be completed non-sequentially.

o Has two Outcomes.

o Will automatically complete when all items have been actioned.

 This is achieved by using the special Outcomes:

• [All Success]

• [Any Fail]

• Adds several Check List type Items to this Item Group

• Adds a Question type Item.

Case "AfterInitialise"

 ' Add new Item Group and Items

 With Workflow.ItemGroups.AddItemGroup("Identification Checks", "", False)

 ' Add Outcomes

 With .OutcomeItems

 .AddNone("[All Success]", True, "Everything is fine")

 .AddAllocateToSupervisor("[Any Fail]", True, "There are issues")

 End With

 ' Add Workflow Items

 With .Items

 ' Check List Items

 .AddCheckListItem("Birth certificate viewed", "")

 .AddCheckListItem("Bank statement viewed", "")

 ' Question

 With .AddQuestion("Has applicant been visually identified?", "")

 With .OutcomeItems

 .AddNone("Yes", True)

 .AddNone("No", False)

 End With

 End With

 End With

 End With

Once added and run, a new Workflow will look something like this:

NOTE: This sample makes extensive use of helper methods added in finPOWER Connect

version 2.02.04, e.g., to add Workflow Items and Outcome Items to the Item Group. These

helper methods are not limited to Version 2 type Workflows.

Page 50 of 95

Skip Items in Group and Complete Group
This sample does the following when the 'Test' Workflow Item is actioned:

• Skips all incomplete items in the Item Group.

• Completes the Item Group with an outcome of 'Good'.

Case "AfterItemAction"

 Dim WorkflowItem2 As finWorkflowItem

 If workflowItem.ItemIdOriginal = "TEST" Then

 ' Skip items (not really required since completing the Item Group will do this anyway)

 For Each WorkflowItem2 In workflowItem.ParentItemGroup.Items

 If WorkflowItem2.Status = isefinWorkflowItemStatus.NotStarted Then

 If Not mWorkflowExecutor.ItemSetStatusSkipped(WorkflowItem2, True) Then

 Main = False

 Exit For

 End If

 End If

 Next

 ' Complete Item Group

 If Main Then

 Main = mWorkflowExecutor.CompleteCurrentItemGroup("Good", "Completed from test Script.")

 End If

 End If

NOTE: In the above example, the code the skip remaining items is included for example. The

code is not really required since the CompleteCurrentItemGroup method will skip any

incomplete Workflow Items before completing the Item Group.

Page 51 of 95

Skip Current Item Group and Add a new Item Group
This sample does the following when the 'Test' Workflow Item is actioned:

• Skips the current Item Group.

• Add a new Item Group 'WS'.

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "TEST" Then

 ' Skip Current Item Group and add Item Group 'WS'

 Main = mWorkflowExecutor.SkipCurrentItemGroup("WS")

 ' Just skip Current Item Group

 'Main = mWorkflowExecutor.SkipCurrentItemGroup()

 ' Skip Current Item Group and repeat it (assumes Item Group has a code)

 'Main = mWorkflowExecutor.SkipCurrentItemGroup(workflow.GetCurrentItemGroup().ItemIdOriginal)

 End If

NOTE: The SkipCurrentItemGroup method can also be used to repeat the current Item Group

by passing in the current Item Group's code as shown in the remarked out code above.

Page 52 of 95

Set Check List Items Based Upon Question Outcome
This sample does the following when the 'Test' Workflow Item in Item Group 'APQ' is actioned

(this Workflow Item is a 'Question' type Item with 'Yes' and 'No' outcomes):

• Sets the states of various Check List Items based on whether the outcome was 'Yes' or 'No'.

o Some Items will be completed, others set to 'Not Applicable' based on the selected

outcome.

o The 'AfterItemAction' event is used.

Case "AfterItemAction"

 If mWorkflowExecutor.CurrentItemGroupId = "APQ" AndAlso workflowItem.ItemIdOriginal = "TEST"

Then

 ' Get Outcome

 Outcome = otherParameters.GetString("Outcome")

 ' Set Check List Items based on Outcome

 If Outcome = "Yes" Then

 ' Address verified 'Good' Client

 If Main Then Main = mWorkflowExecutor.ItemSetStatusNotApplicableByItemId("DL", True)

 If Main Then Main = mWorkflowExecutor.ItemSetStatusNotApplicableByItemId("ADV", True)

 Else

 ' Other

 If Main Then Main = mWorkflowExecutor.CompleteCheckListItemByItemId("GR", "Guarantor

required", True)

 End If

 End If

Once an outcome of 'Yes' is selected, a new Workflow will look like this:

And an outcome of 'No' will look like this:

NOTE: The CompleteCheckListItemByItemId method completes Check List type Items but

DOES NOT FIRE ANY SCRIPT EVENTS such as 'BeforeItemAction' and 'AfterItemAction'. This is

by design.

Note the following:

• The CurrentItemGroupId property of the Workflow Executor can be used to check the

Current Item Group.

o This returns the OriginalItemId property rather than the ItemId since the ItemId may

have a sequence number suffix if the Item Group has been added to the Workflow more

than once.

• Helper methods allow the 'Not Applicable' state of an Item to be set using one of the

following methods:

Page 53 of 95

o ItemSetStatusNotApplicable

o ItemSetStatusNotApplicableByItemId

o ItemSetStatusNotApplicableByOriginalItemId

• Check List Items can be completed using one of the following methods:

o CompleteCheckListItem

o CompleteCheckListItemByItemId

o CompleteCheckListItemByOriginalItemId

Page 54 of 95

Creating Customised Documents
This sample does the following when the 'Test' Workflow Item is actioned:

• Creates the following Document Logs:

o One for the Main Applicant.

o One for the Account Application's Branch.

• The Account Application Advice (AAA) and Client Advice (CA) Word VBA documents are

created.

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "TEST" Then

 ' Document to 'Main' Applicant

 AccountAppApplicant = workflow.AccountApp.GetMainApplicant()

 If AccountAppApplicant Is Nothing Then

 Main = False

 finBL.Error.ErrorBegin("Account Application does not have a 'Main' Applicant.")

 Else

 ' Create Document Log (using helper method of Workflow Executor)

 AccountAppLog = mWorkflowExecutor.CreateAccountAppDocumentLog("AAA",

 True,

 workflow.AccountAppPk,

 workflowItem.pk,

 AccountAppApplicant.Pk)

 ' Update

 With AccountAppLog

 .Notes = "Custom note details for Applicant."

 End With

 ' Save

 Main = AccountAppLog.Save()

 End If

 ' Document to Branch

 If Main Then

 If workflow.AccountApp.BranchPk = 0 Then

 Main = False

 finBL.Error.ErrorBegin("Account Application does not have a Branch.")

 Else

 ' Create Document Log (using helper method of Workflow Executor)

 ClientLog = mWorkflowExecutor.CreateClientDocumentLog("CA",

 True,

 workflow.AccountApp.Branch.ClientPk,

 workflowItem.pk)

 ' Update

 With ClientLog

 .Notes = "Custom note details for Branch."

 End With

 ' Save

 Main = ClientLog.Save()

 End If

 End If

 End If

NOTE: Most of the above functionality can be achieved using a 'Send Document' type

Workflow Item. However, in some cases, especially if you want to customise the Document

Logs (or Email/ SMS content as per the next example) then using the Workflow Type Script is

recommended.

Note the following:

• The CreateAccountAppDocumentLog and CreateClientDocumentLog helper methods of the

Workflow Executor automatically record the created Logs to the Workflow Executors

CreatedLogs collection providing the second parameter is True.

Page 55 of 95

Page 56 of 95

Creating Customised Email Documents
This sample does the following when the 'Test' Workflow Item is actioned:

• Creates the following Email Document Logs:

o One for the Main Client.

o One for the Account's Branch.

• Each of these Email has customised content and recipient lists.

• Client Email Advice (CE) documents are created.

o Any default Subject or Message etc. defined on the Document are ignored and

overwritten with custom details. The Document is just used as a placeholder for the

finPOWER Connect publishing process.

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "TEST" Then

 ' Document to 'Main' Client

 ClientContactMethod = workflow.Account.Clients(0).Client.ContactMethods.GetCurrentEmail()

 If ClientContactMethod Is Nothing OrElse Not ClientContactMethod.HasValues() Then

 Main = False

 finBL.Error.ErrorBegin("Main Client does not have a current Email Address.")

 Else

 ' Create Document Log (using helper method of Workflow Executor)

 ClientLog = mWorkflowExecutor.CreateClientDocumentLog("CE",

 True,

 workflow.Account.Clients(0).ClientPk,

 workflowItem.pk)

 ' Update

 With ClientLog

 ' General

 .Notes = "Custom note details for Client."

 ' Set Email details including CC address and automatic signature

 .ExtendedDataSetEmail(ClientContactMethod.Value,

 "Test Email Subject",

 "Test Email Message HTML",

 "ph@mycompany.zzz",

 "",

 iseMessageTarget.OpenForEdit,

 True,

 "*")

 End With

 ' Save

 Main = ClientLog.Save()

 End If

 ' Document to Branch

 If Main Then

 If workflow.Account.BranchPk = 0 Then

 Main = False

 finBL.Error.ErrorBegin("Client does not have a Branch.")

 ElseIf Len(workflow.Account.Branch.GetEmailForLetters()) = 0 Then

 Main = False

 finBL.Error.ErrorBegin("Branch does not have a current Email Address.")

 Else

 ' Create Document Log (using helper method of Workflow Executor)

 ClientLog = mWorkflowExecutor.CreateClientDocumentLog("CE",

 True,

 workflow.Account.Branch.ClientPk,

 workflowItem.pk)

 ' Update

 With ClientLog

 ' General

 .Notes = "Custom note details for Branch."

 ' Set Email details including no signature

 .ExtendedDataSetEmail(workflow.Account.Branch.GetEmailForLetters(),

 "Test Branch Email Subject",

 "Test Branch Email Message HTML",

 "",

 "",

 iseMessageTarget.OpenForEdit,

Page 57 of 95

 True,

 "")

 End With

 ' Save

 Main = ClientLog.Save()

 End If

 End If

 End If

NOTE: Most of the above functionality can also be applied to SMS type Documents.

Note the following:

• Client Logs are created but there is no reason why an Account Document could not be used

and Account Logs created instead.

• Email and SMS information is recorded against Logs in the ExtendedData property.

o The ExtendedDataSetEmail method of the Logs is used to set this information.

 The return value of this method is ignored since the only time it can fail is if you

attempt to use it on an already-saved Log.

o A similar ExtendedDataSetSms method exists for handling SMS Logs.

• A signature is automatically appended to the bottom of the Main Client's Email Message.

o This is due to a signature of "*" being passed to the method.

o This will include any Entity-specific signature providing the Log's ClientId property has

been set prior to setting the extended data.

o To exclude, pass a signature of "" to the method as the Branch Email does.

Page 58 of 95

Creating Ad-Hoc Emails
Generally, Email and SMS messages are published via Documents (as per the previous couple

of examples). However, it is possible to send them directly and record the details to a Log.

This sample does the following when the 'Test' Workflow Item is actioned:

• Sends an Email directly.

o This assumes that User Preferences have SMTP settings configured.

o You can use 'Open For Edit' providing the Workflow is being run from a User's PC via the

finPOWER Connect User Interface.

 This will not work for unattended execution, e.g., from a Web Service.

• Creates the following Email Logs (not Document Logs):

o One for the Main Client.

Case "AfterItemAction"

 If workflowItem.ItemIdOriginal = "TEST" Then

 ' Document to 'Main' Client

 ClientContactMethod = workflow.Account.Clients(0).Client.ContactMethods.GetCurrentEmail()

 If ClientContactMethod Is Nothing OrElse Not ClientContactMethod.HasValues() Then

 Main = False

 finBL.Error.ErrorBegin("Main Client does not have a current Email Address.")

 End If

 ' Send Email

 If Main Then

 ' Initialise

 Recipients = ClientContactMethod.Value

 RecipientsCC = "ph@mycompany.zzz"

 EmailSubject = "Test Email Subject"

 EmailMessage = "Test Email Message HTML"

 ' Append Signature

 Signature = finBL.SettingsUser.EmailSignatureResolved(False, workflow.Account.BranchPk)

 If Len(Signature) <> 0 Then EmailMessage &= Signature

 ' Send

 Main = finBL.SendEmail(Recipients,

 RecipientsCC,

 "",

 EmailSubject,

 EmailMessage,

 "",

 True,

 iseMessageTarget.Send)

 End If

 ' Create Log

 If Main Then

 ClientLog = mWorkflowExecutor.CreateClientLog("Email Sent",

 True,

 workflow.Account.Clients(0).ClientPk,

 workflowItem.pk)

 ' Update

 With ClientLog

 ' Set Email details

 .ExtendedDataSetEmail(Recipients,

 EmailSubject,

 EmailMessage,

 RecipientsCC,

 "",

 iseMessageTarget.Send,

 True,

 "")

 End With

 ' Save

 Main = ClientLog.Save()

 End If

 End If

Page 59 of 95

NOTE: Most of the above functionality can also be applied to SMS type Documents.

Note the following:

• Client Logs are created.

o These are NOT Document Logs, they are simply used to record the details of the Email

that has already been sent.

o Log creation could be omitted however, this is not recommended since it is a good way of

auditing what is being sent.

• A signature is created via finBL.SettingsUser.SignatureResolved.

o This allows an HTML or plain text signature to be created and optionally allows the

primary key of a Branch to be specified so any Entity-specific is created.

o The signature can be omitted if required.

WARNING: Because the Email is sent within a database transaction, any delays in sending the

Email (e.g., communication problems with the SMTP server) may result in locks occurring on

the database.

Page 60 of 95

Automatic Client Credit Enquiry - Veda (New Zealand)
This example performs an automatic Credit Enquiry using the Veda (New Zealand) service for

an Account type Workflow.

NOTE: This is unrelated to the 'Credit Enquiry' type Workflow Item (which simply shows the

Credit Enquiry form to the User) and should not be used in conjunction with this type of item.

This sample does the following when the 'CE' Workflow Item is actioned:

• Uses the 'BeforeItemAction' event.

o Since Web Service calls must first commit and then restart any database transactions,

using any event other than 'BeforeItemAction' means that the Workflow Item will be

completed, even if the Web Service call fails.

• Creates and executes a Veda NZ Request.

• Examines the Credit Enquiry Response and sets the Workflow Item's Outcome.

o NOTE: The Outcome can be set to any value for 'None' type Workflow Items.

Dim Client As finClient

Dim CreditEnquiryRequest As ISCreditEnquiryRequest

Dim CreditEnquiryRequestVeda As ISCreditEnquiryRequest_VedaXmlNZ_IndividualEnquiry

Dim CreditEnquiryResponse As ISCreditEnquiryResponse

Dim CreditEnquiryResponseVeda As ISCreditEnquiryResponse_VedaXmlNZ_Individual

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CE" Then

 ' Validate

 If Not mWorkflowExecutor.CanPerformWebServiceCall() Then

 Main = False

 finBL.Error.ErrorBegin("Cannot perform Web Service call.")

 End If

 If Main Then

 ' Get Main Account Client

 Client = workflow.Account.Clients(0).Client

 ' Create Credit Enquiry Request

 CreditEnquiryRequest = finBL.CreditBureau.CreateCreditEnquiryRequest("VedaXMLNZ",

 "Consumer Enquiry")

 ' Cast to correct type

 CreditEnquiryRequestVeda = DirectCast(CreditEnquiryRequest,

 ISCreditEnquiryRequest_VedaXmlNZ_IndividualEnquiry)

 ' Update from Client

 Main = finBL.CreditBureau.UpdateCreditEnquiryRequestFromClient(CreditEnquiryRequestVeda,

 Client)

 End If

 ' Update Request Options (with those defined under Global Settings)

 ' NOTE: This step is not necessary if all options are being set in the next block

 If Main Then

 Main = finBL.CreditBureau.UpdateCreditEnquiryRequestOptions(CreditEnquiryRequestVeda,

 Client)

 End If

 ' Set Options

 If Main Then

 With CreditEnquiryRequestVeda

 .AccessPurposeDescription = "Credit Decision"

 .AccountTypeDescription = "Term Account"

 .ApplicantTypeDescription = "Single Applicant"

Page 61 of 95

 .ConsentObtained = True

 '.IncludeCourtFinesData = True

 End With

 End If

 ' Execute Request

 ' NOTE: Creates a Client Log and links this to this Workflow Item

 If Main Then

 mWorkflowExecutor.WebServiceCallBegin()

 Main = finBL.CreditBureau.ExecuteCreditEnquiry(CreditEnquiryRequestVeda,

 CreditEnquiryResponse, Nothing, True,

 workflow.Pk, workflowItem.pk)

 mWorkflowExecutor.WebServiceCallEnd()

 End If

 ' Examine the Response

 If Main Then

 CreditEnquiryResponseVeda = DirectCast(CreditEnquiryResponse,

 ISCreditEnquiryResponse_VedaXmlNZ_Individual)

 ' Set Outcome

 If CreditEnquiryResponseVeda.BankruptcyCountUndischarged > 0 Then

 otherParameters.SetString("Outcome", "Fail")

 otherParameters.SetString("StatusNotes", String.Format("{0} undischarged bankruptcies",

 CreditEnquiryResponseVeda.BankruptcyCountUndischarged))

 ElseIf CreditEnquiryResponseVeda.BankruptcyCount > 0 Then

 otherParameters.SetString("Outcome", "Refer")

 otherParameters.SetString("StatusNotes", String.Format("{0} bankruptcies",

 CreditEnquiryResponseVeda.BankruptcyCount))

 Else

 otherParameters.SetString("Outcome", "Pass")

 otherParameters.SetString("StatusNotes", "No bankruptcies")

 End If

 End If

 End If

End Select

Note the following:

• Validates that a Web Service can be performed using the

WorkflowExecutor.CanPerformWebServiceCall method.

o NOTE: This should only return False if, for some reason, this item is being called within

a nested database transaction.

• When creating the CreditEnquiryRequest object, the Service (VedaXMLNZ) and Product

(Consumer Enquiry) are as per the Credit Enquiry wizard, e.g.:

• The Service and Product determine the object type that we must use to perform the Credit

Enquiry Request.

o The code:

CreditEnquiryRequest = finBL.CreditBureau.CreateCreditEnquiryRequest("VedaXMLNZ",

 "Consumer Enquiry")

Always returns a generic ISCreditEnquiryRequest object.

Page 62 of 95

o To determine the Service/ Product specific object type, we can use the TypeName function

on the returned object, e.g.:

MsgBox(TypeName(CreditEnquiryRequest))

Pressing Ctrl+C will copy the message box text to the clipboard.

o We then cast this object to the correct type and assign it to our

CreditEnquiryRequestVeda variable:

CreditEnquiryRequestVeda = DirectCast(CreditEnquiryRequest,

 ISCreditEnquiryRequest_VedaXmlNZ_IndividualEnquiry)

• Once the request has been updated from the Account's Main Client and the options updated

from those defined under Global Settings, the service-specific options can be set.

o These options vary based on the request object type.

o The options can generally have self-explanatory names and can be determined from the

Credit Enquiry wizard's 'Options' page, e.g.:

o The Request generally has 2 versions of each option, one of which is suffixed by

'Description'. We set these versions since the non-suffixed version generally requires a

Credit Bureau-specific code, e.g.:

.AccessPurposeDescription = "Credit Decision"

• Since Web Service Requests cannot be executed inside a database transaction and actioning

a Workflow Item occurs within a database transaction, we must use the

WebServiceCallBegin and WebServiceCallEnd methods before and after executing the

request.

WARNING: Failure to use these methods will result in either the Credit Enquiry request

failing or a runtime exception occurring.

• Once the request has been executed, a Response object is returned.

o Just like the request, this is a generic object. In this case an ISCreditEnquiryResponse

object.

o To get to service-specific properties, we must cast it to the correct type (remember, you

can use the TypeName function to display the returned response type):

Page 63 of 95

• Setting the Outcome and Status Notes is allowed for 'None' type Workflow Items, even

though they do not define any Outcomes.

WARNING: The Script sample sets .ConsentObtained = True however, for legal reasons you

may need to fail actioning of this item based on another Workflow Item, e.g., a Check List

Item that determines whether the Client has given consent for a Credit Enquiry to be

performed.

Page 64 of 95

Automatic Client Credit Enquiry – GreenId
This example performs an automatic Credit Enquiry using the Edentiti GreenId service for an

Account type Workflow.

The 'CE' Workflow Item is set to NOT repeat for each Client, therefore it will only be performed

on the 'Main' Account Client.

See the Automatic Client Credit Enquiry – Veda (New Zealand) for more information.

Dim Client As finClient

Dim CreditEnquiryRequest As ISCreditEnquiryRequest

Dim CreditEnquiryRequestGreenId As ISCreditEnquiryRequest_GreenId_BackgroundCheckAU

Dim CreditEnquiryResponse As ISCreditEnquiryResponse

Dim CreditEnquiryResponseGreenId As ISCreditEnquiryResponse_GreenId_BackgroundCheck

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CE" Then

 ' Validate

 If Not mWorkflowExecutor.CanPerformWebServiceCall() Then

 Main = False

 finBL.Error.ErrorBegin("Cannot perform Web Service call.")

 End If

 If Main Then

 ' Get Main Account Client

 Client = workflow.Account.Clients(0).Client

 ' Create Credit Enquiry Request

 CreditEnquiryRequest = finBL.CreditBureau.CreateCreditEnquiryRequest("GreenId",

"Background Check (Australia)")

 ' Cast to correct type

 CreditEnquiryRequestGreenId = DirectCast(CreditEnquiryRequest,

 ISCreditEnquiryRequest_GreenId_BackgroundCheckAU)

 ' Update from Client

 Main =

finBL.CreditBureau.UpdateCreditEnquiryRequestFromClient(CreditEnquiryRequestGreenId,

 Client)

 End If

 ' Update Request Options (with those defined under Global Settings)

 ' NOTE: This step is not necessary if all options are being set in the next block

 If Main Then

 Main = finBL.CreditBureau.UpdateCreditEnquiryRequestOptions(CreditEnquiryRequestGreenId,

 Client)

 End If

 ' Set Options

 If Main Then

 With CreditEnquiryRequestGreenId

 .PerformAUBackgroundCheck_DnBCreditHeader = False

 .PerformAUBackgroundCheck_DvsDriversLicence = False

 .PerformAUBackgroundCheck_DvsMedicare = False

 .PerformAUBackgroundCheck_DvsPassport = False

 .PerformAUBackgroundCheck_DvsVisa = False

 .PerformAUNonDvsDriversLicence = False

 ' Clear Previous Address

 .PrevAddressFromAddressDetails(finBL.CreateAddressDetails())

 End With

 End If

 ' Execute Request

 ' NOTE: Creates a Client Log and links this to this Workflow Item

 If Main Then

 mWorkflowExecutor.WebServiceCallBegin()

 Main = finBL.CreditBureau.ExecuteCreditEnquiry(CreditEnquiryRequestGreenId,

 CreditEnquiryResponse, Nothing, True,

 workflow.Pk, workflowItem.pk)

Page 65 of 95

 mWorkflowExecutor.WebServiceCallEnd()

 End If

 ' Examine the Response

 If Main Then

 CreditEnquiryResponseGreenId = DirectCast(CreditEnquiryResponse,

 ISCreditEnquiryResponse_GreenId_BackgroundCheck)

 ' Set Outcome

 If CreditEnquiryResponseGreenId.OverallOutcomeState =

iseGreenIdOverallOutcomeState.Verified Then

 otherParameters.SetString("Outcome", "Verified")

 otherParameters.SetBoolean("OutcomeSuccess", True)

 Else

 otherParameters.SetString("Outcome", "NotVerified")

 otherParameters.SetBoolean("OutcomeSuccess", False)

 End If

 otherParameters.SetString("StatusNotes",

 CreditEnquiryResponseGreenId.OverallOutcomeStateText)

 End If

 End If

End Select

Note the following:

• Since the Workflow Item is NOT set to repeat for each Client, the Workflow Item's, the

Account's 'Main' Client is retrieved.

o If the Workflow Item was repeated for each Client, the Workflow Item's

GetSourceObject method could be used to retrieve the relevant Client.

• The Workflow Item is set to unsuccessful using
otherParameters.SetBoolean("OutcomeSuccess", False)

o This means that the item will display a 'Failed' icon.

Page 66 of 95

Automatic Applicant Credit Enquiry - Centrix (New Zealand)
This example performs an automatic Credit Enquiry using the Centrix (New Zealand) service

for an Account Application type Workflow.

The 'CE' Workflow Item is set to repeat for each Applicant.

See the Automatic Client Credit Enquiry – Veda (New Zealand) for more information.

Dim AccountAppApplicant As finAccountAppApplicant

Dim Client As finClient

Dim CreditEnquiryRequest As ISCreditEnquiryRequest

Dim CreditEnquiryRequestCentrix As ISCreditEnquiryRequest_CentrixNZ_ConsumerCreditCheck

Dim CreditEnquiryResponse As ISCreditEnquiryResponse

Dim CreditEnquiryResponseCentrix As ISCreditEnquiryResponse_CentrixNZ_Individual

Dim SourceObject As Object

' Assume Success

Main = True

' Get Workflow Executor

mWorkflowExecutor = DirectCast(otherParameters.GetObject("WorkflowExecutor"), finWorkflowExecutor)

' Handle Events

Select Case eventId

 Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CE" Then

 ' Validate

 If Not mWorkflowExecutor.CanPerformWebServiceCall() Then

 Main = False

 finBL.Error.ErrorBegin("Cannot perform Web Service call.")

 End If

 ' Get Applicant from Workflow Item

 If Main Then

 If workflowItem.GetSourceObject(SourceObject) Then

 AccountAppApplicant = DirectCast(SourceObject, finAccountAppApplicant)

 Else

 Main = False

 End If

 End If

 ' Create Client from Applicant

 If Main Then

 Main = AccountAppApplicant.CreateClient(True, Client)

 End If

 If Main Then

 ' Create Credit Enquiry Request

 CreditEnquiryRequest = finBL.CreditBureau.CreateCreditEnquiryRequest("CentrixNZ",

 "Consumer Credit Check")

 ' Cast to correct type

 CreditEnquiryRequestCentrix = DirectCast(CreditEnquiryRequest,

 ISCreditEnquiryRequest_CentrixNZ_ConsumerCreditCheck)

 ' Update from Client

 Main =

finBL.CreditBureau.UpdateCreditEnquiryRequestFromClient(CreditEnquiryRequestCentrix,

 Client)

 End If

 ' Update Request Options (with those defined under Global Settings)

 ' NOTE: This step is not necessary if all options are being set in the next block

 If Main Then

 Main = finBL.CreditBureau.UpdateCreditEnquiryRequestOptions(CreditEnquiryRequestCentrix,

 Client)

 End If

 ' Set Options

 If Main Then

 With CreditEnquiryRequestCentrix

 .EnquiryReasonDescription = "Credit Application"

 .ProductTypeDescription = "Consumer Finance"

 .ApplicantTypeDescription = "Single Applicant"

 '.IncludeCourtFinesData = True

 End With

 End If

Page 67 of 95

 ' Execute Request

 ' NOTE: Creates a Client Log and links this to this Workflow Item

 If Main Then

 mWorkflowExecutor.WebServiceCallBegin()

 Main = finBL.CreditBureau.ExecuteCreditEnquiry(CreditEnquiryRequestCentrix,

 CreditEnquiryResponse, Nothing, True,

 workflow.Pk, workflowItem.pk)

 mWorkflowExecutor.WebServiceCallEnd()

 End If

 ' Examine the Response

 If Main Then

 CreditEnquiryResponseCentrix = DirectCast(CreditEnquiryResponse,

 ISCreditEnquiryResponse_CentrixNZ_Individual)

 ' Set Outcome

 If CreditEnquiryResponseCentrix.BankruptcyCountUndischarged > 5 Then

 otherParameters.SetString("Outcome", "Fail")

 otherParameters.SetString("StatusNotes", String.Format("{0} bankruptcies",

 CreditEnquiryResponseCentrix.BankruptcyCount))

 ElseIf CreditEnquiryResponseCentrix.BankruptcyCount > 0 Then

 otherParameters.SetString("Outcome", "Refer")

 otherParameters.SetString("StatusNotes", String.Format("{0} bankruptcies",

 CreditEnquiryResponseCentrix.BankruptcyCount))

 Else

 otherParameters.SetString("Outcome", "Pass")

 otherParameters.SetString("StatusNotes", "No bankruptcies")

 End If

 End If

 End If

End Select

Note the following:

• Since the Workflow Item is set to repeat for each Applicant, the Workflow Item's

GetSourceObject method can be used to retrieve the Applicant.

o If this Workflow Item was not repeated for each Applicant then the

workflow.AccountApp.GetMainApplicant method could be used to retrieve the 'Main'

Applicant.

• The finAccountAppApplicant.CreateClient method is used to create a temporary Client

object from the Applicant.

o The Account Application Type's Script allows this to be customised.

Page 68 of 95

Documents
Workflow Items can be used to publish Documents, e.g., Word VBA templates or Email or SMS

messages.

All Documents in finPOWER Connect are handled in the following way:

• A Log record (e.g., a Client Log) is created defining the Document to publish.

o The Log also contains additional information when creating Email and SMS documents.

• The Log can be published either via the Log form or the Publish Documents wizard.

o At this point, the Word document is generated or the Email or SMS message sent.

The Workflow Type combined with the 'Document Type' and 'File Type' of the Document (e.g.,

Word, Email or SMS) determines the Logs that are created when actioning a 'Send Document'

type Workflow Item:

Workflow Type Document Type File Type Log Created

Account Account Word VBA

Excel VBA

Log

Script

HTML

A single Account Log per Workflow

Item (e.g., if repeating for each Client,

multiple Workflow Items will have been

created).

The Workflow Item linked to the Log

details the Client if applicable.

 SMS An Account Log for each Client that

could receive the SMS.

 Email An Account Log for each Client that

could receive the Email if the

generated Message, Subject, CC or

BCC are NOT the same for all Clients;

otherwise, a single Account Log will

be created to send the Email to

multiple recipients.

 Client Word VBA

Excel VBA

Log

Script

HTML

A single Client Log per Workflow Item

(e.g., if repeating for each Client,

multiple Workflow Items will have been

created).

If not repeating for each Client, the

Account's Main Client is used.

 SMS A single Client Log per Workflow Item

(e.g., if repeating for each Client,

multiple Workflow Items will have been

created).

If not repeating for each Client, the

Account's Main Client is used.

 Email A single Client Log per Workflow Item

(e.g., if repeating for each Client).

If not repeating for each Client, the

Account's Main Client is used.

Client Client Word VBA

Excel VBA

Log

Script

HTML

A single Client Log.

Page 69 of 95

 SMS A single Client Log.

 Email A single Client Log.

NOTE: In addition to the above, a Workflow Item can have a 'Source Type' and 'Source Id' set

via Script (this is the same mechanism used when repeating an Account Workflow Item for

each Account Client). This also affects the type of Log created.

Workflow Type Item Wizard

Workflow Type Scripts

'Send Document' Type Items

A Workflow Type Script can affect 'Send Document' type Workflow items as follows:

• BeforeItemAction event

o This event is called before actioning any type of Workflow Item and is described fully in

the BeforeItemAction section.

• CouldActionItem event

o This event is called before attempting to action a 'Send Document' type Item.

o The event allows the Script to determine whether it is worth attempting to send the

Document, e.g., to ensure all recipients can be contacted.

o This event is described fully in the CouldActionItem section.

Fully Scripted Solution

A Workflow Type Script can send Documents when processing other items.

A fully scripted solution is recommended if you want full control over sending of a Document,

e.g.:

• You want to send to specific Account Clients based on criteria not available when configuring

the Workflow Type Item.

• You want full control over CC or BCC for an Email.

o The basics can be handled by a Document Script but it may be more intuitive simply

Script this in the Workflow Type Script.

• You want a fully customised message (e.g., Email message) without relying on smart tag

replacement and the template message configured in the Document.

o The Document Script's 'GenerateMessage' event can handle this but, again, it may be

more intuitive to simply Script this in the Workflow Type Script.

'TODO: Example of blank item that does stuff, e.g., generates an AA, AAS and AAE document

Document Scripts
A Document can define a Script.

Page 70 of 95

When generating SMS and Email type Documents, the Workflow Executor calls the Document's

'GenerateMessage' Script event to enable the Script to provide (or update) the message to be

sent.

NOTE: Version 1 type Workflows called the 'GenerateMessage' Script event once to allow the

Document Script to provide a template message (which could contain smart tags such as

[Client.ClientId]) and then once for each Client.

This behaviour has been simplified for Version 2 type Workflows. The Generate Message Script

is called for each Client that is to receive the SMS or Email thereby allowing a message to be

generated for each Client.

WARNING: Versions prior to 2.03.02 did not always pass the correct object to the Document

Script, e.g., an Account Document may have been passed a Client object.

This functionality (and the details in the sections below) has been changed so that Documents

are always passed the correct object type.

The finWorkflowItem has a GetSourceObjectForDocument method that determines the

'source' object that is sent to the 'GenerateMessage' Document Script event.

The source object will always match the Document's Type.

Page 71 of 95

Account SMS

The Document's 'GenerateMessage' Script event will be called multiple times; once for each

recipient (as determined by the Workflow Item's GetDocumentRecipients method).

For an Account Document, the 'Other' page of the Documents form determines which Clients

should be included as recipients:

This is used in conjunction with the Workflow Item's settings to determine whether the

Document should be sent to the Branch, Dealer etc:

The Script will receive the following parameters:

• source

o A finAccount object defined either by the Workflow or the Workflow Item (if the

Workflow Item is set to have a SourceObjectType of Account).

 NOTE: If the Workflow (or Workflow Item) target an Account Application, a temporary

finAccount object will be created from this Account Application.

The eventArgs parameter will ALWAYS contain the following:

• Message

o The SMS message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [Account.AccountId] or [Client.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• AccountClient

o The Account Client (a finAccountClient object).

o This will not exist if the recipient is a Branch, Dealer, Dealer Employee etc.

• Client

o The Client (a finClient object).

o The only time this will not exist is if the recipient is a Broker or Dealer Employee that

does not link to a Client.

• ClientEmployment

o The Client Employment (a finClientEmployment object).

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Page 72 of 95

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

o Can be used to override the SMS message supplied in eventArgs.

• Phone

o Can be used to override or to specify an SMS phone number.

returnValues.SetString("message", "my custom message")

returnValues.SetString("phone", "027 12345678")

Page 73 of 95

Account Email

The Document's 'GenerateMessage' Script event will be called multiple times; once for each

recipient (as determined by the Workflow Item's GetDocumentRecipients method).

For an Account Document, the 'Other' page of the Documents form determines which Clients

should be included as recipients:

This is used in conjunction with the Workflow Item's settings to determine whether the

Document should be sent to the Branch, Dealer etc:

The Script will receive the following parameters:

• source

o A finAccount object defined either by the Workflow or the Workflow Item (if the

Workflow Item is set to have a SourceObjectType of Account).

 NOTE: If the Workflow (or Workflow Item) target an Account Application, a temporary

finAccount object will be created from this Account Application.

The eventArgs parameter will ALWAYS contain the following:

• Message

o The Email message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [Account.AccountId] or [Client.Name].

• Subject

o The Email subject as defined on either the Document or the Workflow Item.

o This may contain tag, e.g., [Account.AccountId] or [Client.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• AccountClient

o The Account Client (a finAccountClient object).

o This will not exist if the recipient is a Branch, Dealer, Dealer Employee etc.

• Client

o The Client (a finClient object).

o The only time this will not exist is if the recipient is a Broker or Dealer Employee that

does not link to a Client.

• ClientEmployment

o The Client Employment (a finClientEmployment object).

Page 74 of 95

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

o Can be used to override the Email message supplied in eventArgs.

• Subject

o Can be used to override the Email subject supplied in eventArgs.

• To

o Can be used to override or to specify one or more Email recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• CC

o Can be used to specify one or more Email CC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• BCC

o Can be used to specify one or more Email BCC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

returnValues.SetString("message", "my custom message")

returnValues.SetString("cc", "manager@mycompany.com; sales@mycompany.com")

Page 75 of 95

Client SMS

The Document's 'GenerateMessage' Script event will be called for the Client.

If the Workflow is an Account type Workflow then the Client will be the Account's Main Client

unless the Workflow Item is set to 'Repeat this item for each Account Client'.

The Script will receive the following parameters:

• source

o A finClient object defined either by the Workflow or the Workflow Item (if the Workflow

Item is set to have a SourceObjectType of Client).

o WARNING: If this is an Account Workflow and this Client Document has been set to be

sent to the Dealer Employee or Broker Employee then this may be Nothing if the

Employee is not linked to a Client.

The eventArgs parameter will ALWAYS contain the following:

• Message

o The SMS message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [Client.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• ClientEmployment

o The Client Employment (a finClientEmployment object).

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

o Can be used to override the SMS message supplied in eventArgs.

• Phone

o Can be used to override or to specify an SMS phone number.

returnValues.SetString("message", "my custom message")

returnValues.SetString("phone", "027 12345678")

Page 76 of 95

Client Email

The Document's 'GenerateMessage' Script event will be called for the Client.

If the Workflow is an Account type Workflow then the Client will be the Account's Main Client

unless the Workflow Item is set to 'Repeat this item for each Account Client'.

The Script will receive the following parameters:

• source

o A finClient object defined either by the Workflow or the Workflow Item (if the Workflow

Item is set to have a SourceObjectType of Client).

o WARNING: If this is an Account Workflow and this Client Document has been set to be

sent to the Dealer Employee or Broker Employee then this may be Nothing if the

Employee is not linked to a Client.

The eventArgs parameter will ALWAYS contain the following:

• Message

o The Email message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [Account.AccountId] or [Client.Name].

• Subject

o The Email subject as defined on either the Document or the Workflow Item.

o This may contain tag, e.g., [Account.AccountId] or [Client.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• ClientEmployment

o The Client Employment (a finClientEmployment object).

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

o Can be used to override the Email message supplied in eventArgs.

• Subject

o Can be used to override the Email subject supplied in eventArgs.

• To

o Can be used to override or to specify one or more Email recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• CC

o Can be used to specify one or more Email CC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• BCC

o Can be used to specify one or more Email BCC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

Page 77 of 95

returnValues.SetString("message", "my custom message")

returnValues.SetString("cc", "manager@mycompany.com; sales@mycompany.com")

Page 78 of 95

Account Application SMS

The Document's 'GenerateMessage' Script event will be called multiple times; once for each

recipient (as determined by the Workflow Item's GetDocumentRecipients method).

For an Account Application Document, the 'Other' page of the Documents form determines

which Applicants should be included as recipients:

This is used in conjunction with the Workflow Item's settings to determine whether the

Document should be sent to the Branch, Dealer etc:

The Script will receive the following parameters:

• source

o A finAccountApp object defined either by the Workflow or the Workflow Item (if the

Workflow Item is set to have a SourceObjectType of AccountApp).

The eventArgs parameter will ALWAYS contain the following:

• Message

o The SMS message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [AccountApp.AccountAppId] or [Applicant.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• Applicant

o The Applicant (a finAccountAppApplicant object).

o This will not exist if the recipient is a Branch, Dealer, Dealer Employee etc.

• Client

o The Client (a finClient object).

o The only time this will exist is if the recipient is a Branch, Broker or Dealer or a Broker/

Dealer Employee that links to a Client.

• ClientEmployment

o The Client Employment (a finClientEmployment object).

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

Page 79 of 95

o Can be used to override the SMS message supplied in eventArgs.

• Phone

o Can be used to override or to specify an SMS phone number.

returnValues.SetString("message", "my custom message")

returnValues.SetString("phone", "027 12345678")

Page 80 of 95

Account Application Email

The Document's 'GenerateMessage' Script event will be called multiple times; once for each

recipient (as determined by the Workflow Item's GetDocumentRecipients method).

For an Account Application Document, the 'Other' page of the Documents form determines

which Applicants should be included as recipients:

This is used in conjunction with the Workflow Item's settings to determine whether the

Document should be sent to the Branch, Dealer etc:

The Script will receive the following parameters:

• source

o A finAccountApp object defined either by the Workflow or the Workflow Item (if the

Workflow Item is set to have a SourceObjectType of AccountApp).

The eventArgs parameter will ALWAYS contain the following:

• Message

o The SMS message as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [AccountApp.AccountAppId] or [Applicant.Name].

• Subject

o The Email subject as defined on either the Document or the Workflow Item.

 This may contain tag, e.g., [AccountApp.AccountAppId] or [Applicant.Name].

• Workflow

o The Workflow (a finWorkflow object).

• WorkflowItem

o The Workflow Item (a finWorkflowItem object).

The eventArgs parameter may OPTIONALLY contain the following:

• Applicant

o The Applicant (a finAccountAppApplicant object).

o This will not exist if the recipient is a Branch, Dealer, Dealer Employee etc.

• Client

o The Client (a finClient object).

o The only time this will exist is if the recipient is a Branch, Broker or Dealer or a Broker/

Dealer Employee that links to a Client.

• ClientEmployment

o The Client Employment (a finClientEmployment object).

o The only time this will exist is if the recipient is a Broker or Dealer Employee.

Page 81 of 95

Certain values can be overridden by adding the appropriate entry into the returnValues Key/

Value List:

• Message

o Can be used to override the Email message supplied in eventArgs.

• Subject

o Can be used to override the Email subject supplied in eventArgs.

• To

o Can be used to override or to specify one or more Email recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• CC

o Can be used to specify one or more Email CC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

• BCC

o Can be used to specify one or more Email BCC recipients.

o This can be either a comma or semi-colon separated list of Email addresses.

returnValues.SetString("message", "my custom message")

returnValues.SetString("cc", "manager@mycompany.com; sales@mycompany.com")

Page 82 of 95

HTML Widgets
As of finPOWER Connect 3.00.06, HTML Widget' type Items were introduced for Version 2

Workflow Types.

Workflow Type Item
HTML Widget Workflow Type Items allow an HTML Widget Script to be defined, e.g.:

They also allow Outcomes to be defined, e.g.:

The reason Outcomes can be defined is that the HTML Widget can opt to either Action the

Workflow Item associated with it or, if it makes more sense, set the Outcome of the Workflow

Item which will, in turn, perform any Outcome Actions.

HTML Widget
When an 'HTML Widget' type item is actioned, the HTML Widget Script will be passed the

primary key of the Workflow and the Workflow Item as startup parameters.

Creating a new HTML Widget and pasting template code gives the option of pasting a

'Workflow' code template. This is shown below:

Option Explicit On

Option Strict On

' Objects

Private mCombinedParameters As ISKeyValueList

Private mParameters As ISKeyValueList

Private mStartupParameters As ISKeyValueList

Public Function Main(eventId As String, parametersJson As String, startUpParametersJson As String,

hostingContext As isefinHtmlWidgetHostingContext, requestInfo As finScriptRequestInfo, ByRef

returnValue As String) As Boolean

 ' Assume Success

 Main = True

 ' Get Parameters

 mParameters = finBL.CreateKeyValueList()

 mParameters.FromSimpleJsonString(parametersJson)

 mStartupParameters = finBL.CreateKeyValueList()

 mStartupParameters.FromSimpleJsonString(startUpParametersJson)

 ' Get Combined Parameters (Startup Parameters updated with event Parameters)

 mCombinedParameters = mStartupParameters.Clone()

 mCombinedParameters.UpdateFromKeyValueList(mParameters, True)

 ' Handle Events

 Select Case eventId

 Case ""

 ' Main event, i.e., return initial HTML content (excluding html and body tags)

 returnValue = ScriptInfo.TemplateText

Page 83 of 95

 Case "Complete"

 ' Complete Workflow Item

 Main = Complete()

 Case Else

 Main = False

 finBL.Error.ErrorBeginFormat("Unhandled event '{0}'.", eventId)

 End Select

End Function

Private Function Complete() As Boolean

 Dim Outcome As String

 Dim Success As Boolean

 Dim WorkflowPk As Integer

 Dim WorkflowItemPk As Integer

 Dim WorkflowExecutor As finWorkflowExecutor

 ' Assume Success

 Success = True

 ' Get Parameters

 With mCombinedParameters

 Outcome = .GetString("outcome")

 WorkflowPk = .GetInteger("workflowPk")

 WorkflowItemPk = .GetInteger("workflowItemPk")

 End With

 ' Create Workflow Executor

 WorkflowExecutor = finBL.CreateWorkflowExecutor()

 Success = WorkflowExecutor.WorkflowLoadPk(WorkflowPk)

 ' Action/ Set Outcome

 If Success Then

 If Len(Outcome) = 0 Then

 Success = WorkflowExecutor.ExecuteWorkflowItemPerformAction(WorkflowItemPk, True, True, "my

notes")

 Else

 Success = WorkflowExecutor.ExecuteWorkflowItemSetOutcome(WorkflowItemPk, outcome, True,

True, "my notes")

 End If

 End If

 Return Success

End Function

Pasting template code also supplies the following Template Text:

<div class="is-widget-content">

 <button id="cmdComplete" class="is-button">Complete</button>

 <button id="cmdComplete_Yes" class="is-button">Complete with Outcome "Yes"</button>

</div>

<script>

// Initialise

$(function () {

 // Handle buttons

 $("#cmdComplete").click(function () { Complete(""); });

 $("#cmdComplete_Yes").click(function () { Complete("Yes"); });

});

function Complete(outcome) {

 widget.GetString("Complete", {outcome: outcome},

 function (data) {

 // Success

 widget.RefreshParent();

 widget.Close();

 },

 function (data) {

 // Failed

 widget.UI.MsgBoxAlert(data);

 });

}

</script>

Page 84 of 95

NOTE: The finPOWER Connect HTML Widgets document contains more details on creating and

configuring HTML Widgets.

Page 85 of 95

Page Sets
As of finPOWER Connect 2.02.06, 'Page Set' type Items were introduced for Version 2

Workflow Types.

Workflow Type Item
Page Set Workflow Type Items allow a Page Set to be defined, e.g.:

They also allow Outcomes to be defined, e.g.:

The reason Outcomes can be defined is that the Page Set can opt to either Action the Workflow

Item associated with it or, if it makes more sense, set the Outcome of the Workflow Item

which will, in turn, perform any Outcome Actions.

Page Set
When a 'Page Set' type item is actioned, the Page Set will be passed the primary key of the

Workflow and the Workflow Item.

Creating a new Page Set and pasting template code gives the option of pasting a 'Workflow'

code template. This is shown below:

Option Explicit On

Option Strict On

' Objects

Private mWorkflow As finWorkflow

Private mWorkflowItem As finWorkflowItem

' Reporting and User Interface Objects

Public mReports As ISfinReports

Public mUI As ISUserInterfaceBL

Public Overrides Function Initialise() As Boolean

 Dim Workflow As finWorkflow

 Dim WorkflowItem As finWorkflowItem

 Dim WorkflowPk As Integer

 Dim WorkflowItemPk As Integer

 ' Assume Success

 Initialise = True

 ' Initialise

 mReports = DirectCast(psh.Reports, ISfinReports)

 mUI = DirectCast(psh.UserInterface, ISUserInterfaceBL)

 ' Get Parameters

 Workflow = DirectCast(psh.Parameters.GetObject("workflow"), finWorkflow)

 WorkflowItem = DirectCast(psh.Parameters.GetObject("workflowItem"), finWorkflowItem)

 WorkflowPk = psh.Parameters.GetInteger("workflowPk")

 WorkflowItemPk = psh.Parameters.GetInteger("workflowItemPk")

Page 86 of 95

 ' Get/ Create Objects

 If Workflow Is Nothing Then

 ' Load

 mWorkflow = finBL.CreateWorkflow()

 Initialise = mWorkflow.LoadPk(WorkflowPk)

 ' Get Workflow Item

 If WorkflowItemPk <> 0 Then

 mWorkflowItem = mWorkflow.GetItemByPk(WorkflowItemPk)

 If mWorkflowItem Is Nothing Then

 Initialise = False

 finBL.Error.ErrorBeginFormat("Workflow Item {0} not found.", WorkflowItemPk)

 End If

 End If

 Else

 ' Objects passed to Page Set

 mWorkflow = Workflow

 mWorkflowItem = WorkflowItem

 End If

 ' Validate

 If Initialise Then

 ' E.g.

 ' Check mWorkflowItem is not Nothing

 If mWorkflowItem Is Nothing Then

 Initialise = False

 finBL.Error.ErrorBegin("This Page Set requires a valid Workflow Item.")

 End If

 End If

 ' Make Page Set Read-Only?

 If Initialise Then

 ' psh.ReadOnlySet()

 End If

 ' Load Fields

 If Initialise Then

 Fields_Load()

 End If

End Function

Private Sub Fields_Load()

 ' Workflow

 With mWorkflow.UserData

 ' Update Page Objects, e.g.

 ' txtImpact.Text = .GetString("Impact")

 End With

 ' Workflow Item

 With mWorkflowItem.UserData

 ' Update Page Objects, e.g.

 ' txtReason.Text = .GetString("Reason")

 End With

End Sub

Private Sub Fields_Save()

 ' Workflow

 With mWorkflow.UserData

 ' Update properties from Page Objects, e.g.

 ' .SetString("Impact", txtImpact.Text)

 End With

 ' Workflow Item

 With mWorkflowItem.UserData

 ' Update properties from Page Objects, e.g.

 ' .SetString("Reason", txtReason.Text)

 End With

End Sub

Public Sub PageSet_CommandButtonClick(sender As Object,

 e As finPageSetHandlerCommandButtonClickEventArgs) Handles

Me.CommandButtonClick

 Dim Ok As Boolean

Page 87 of 95

 Select Case e.CommandButton

 Case isefinPageSetCommandButton.Finish, isefinPageSetCommandButton.Ok

 ' Assume Success

 Ok = True

 ' Save Fields

 Fields_Save()

 ' Save Workflow

 If Ok Then Ok = mWorkflow.Save()

 ' Action Workflow Item

 If Ok Then

 Ok = psh.WorkflowItemPerformAction(mWorkflow.Pk, mWorkflowItem.Pk, "Status notes.")

 ' Ok = psh.WorkflowItemSetOutcome(mWorkflow.Pk, mWorkflowItem.Pk, "Outcome", "Status

notes.")

 End If

 ' Error?

 If Not Ok Then

 mUI.ErrorMessageShow()

 ' Do not close this Page Set

 e.Cancel = True

 End If

 End Select

End Sub

Of note in the template code are the following:

• The Page Set code can also accept 'workflow' and 'workflowItem' object parameters.

o This code has been added for future flexibility and is not yet used.

• When the 'OK' or 'Finish' button is clicked, the following is done:

o The Workflow is saved.

o The Workflow item is actioned (or the outcome set).

 You may wish for this part to be conditional upon certain information having been

entered, i.e., save the Workflow but not action the item at this point.

NOTE: The finPOWER Connect Page Sets document contains more details on creating and

configuring Page Sets.

Page 88 of 95

Appendix A – Helper Functions

Workflow Functions (finWorkflowFunctions)
Although use of finBL.WorkflowFunctions is generally prohibited from within a Workflow

Type Script, certain functions can still be used from outside of the Workflow Type Script, e.g.,

from conversion and other Scripts.

Certain functions are accessed from within finPOWER Connect, e.g., to skip Item Groups from

a Summary Page or to add a new Item Group from the Items page of the Workflows form.

Commonly used Workflow Functions that can be used outside of the Workflow Type Script are:

• WorkflowDeleteItemGroup

o Used to delete a Workflow Item Group from the User Interface, i.e., flag it as Deleted.

• WorkflowItemStatusNotApplicableToggle

o Used to toggle the 'Not Applicable' status of a Workflow Item, e.g., from Summary Page

links.

• WorkflowItemStatusSkippedToggle

o Used to toggle the 'Skipped' status of a Workflow Item, e.g., from Summary Page links.

Page 89 of 95

Adding and Inserting Workflow Items
The following methods exist in finWorkflowItems and will add items to the end of the

collection:

Method Details

AddAllocateToUser

AddBankAccountEnquiry

AddBankAccountEnquiryReview

AddCancelWorkflow

AddCloseWorkflow

AddCheckListItem

AddCreditEnquiry

AddDecisionCard

AddDocument

AddNone Typically used to a an item with an ItemId that can

be processed by the Script.

AddOutgoingCommunication

AddPaymentArrangement

AddQuestion Use helper methods of the returned

finWorkflowItem.OutcomeItems collection to add

outcomes.

AddRegisterSecurityStatement

AddReview The period can be a description of mneumonic, e.g.,

"2d" or "3 Months".

AddSecurityRegisterSearch

AddRegisterSecurityStatement

AddTest Use the returned finWorkflowItem to set test

criteria relevant to the Workflow's target object type,

e.g., MonitorCategoryATest and

MonitorCategoryARange.

AddWait The period can be a description of mneumonic, e.g.,

"2d" or "3 Months".

Each of the above Add methods has a corresponding Insert method, e.g., InsertWait. The

insert methods take the same parameter plus a first parameter of index where index is the

zero-based index of the item to insert before or can be one of the following, special values:

• -1

o Add to the end of the collection (does exactly the same as the corresponding Add

method).

• -2

Page 90 of 95

o Inserts the item BEFORE the current item if this is the current Item Group.

• -3

o Inserts the item AFTER the current item if this is the current Item Group.

WARNING: When inserting items from the 'AfterItemAction' event, the current item will not

be the item that was just actioned but the new current item (usually the next item).

You can also add and insert copies of a Workflow Item using the Add and Insert methods

together with the Workflow Item's Clone method, e.g.:

Case "BeforeItemAction"

 If workflowItem.ItemIdOriginal = "CHKA" Then

 ' Insert cloned item AFTER current item

 With mWorkflowExecutor.CurrentItemGroup.Items

 .Insert(mWorkflowExecutor.CurrentItemGroup.CurrentItemIndex + 1,

 .ItemByOriginalId("WAIT1").Clone())

 End With

 End If

NOTE: The Insert method does not recognise the special -1, -2 and -3 values for index that

the helper methods details above use.

WARNING: The Clone method copies nearly all Workflow Item properties so ensure the clone

is not used on an already actioned item, including the item being actioned in the

'AfterItemAction' event where properties such as Status have already been updated.

The following methods exist in finWorkflowExecutor to add items to the Workfow:

Method Details

AddItemGroupFromWorkflowType Adds a new Item Group from those defined on the

Workflow Type.

The index parameter determines where to insert the

Item Group and has the following special values:

• -1

o To the end of the Workflow.

AddItemGroupItemsFromWorkflowType Inserts Workflow Items, as defined on the Workflow

Type, into the current Item Group.

The index parameter determines where to insert the

items and has the following special values:

• -1

o Add to the end of the collection.

• -2

o Inserts the item BEFORE the current item.

• -3

o Inserts the item AFTER the current item.

Page 91 of 95

Skipping Items and Item Groups
The following methods exist in finWorkflowExecutor and allow skipping of Workflow Items

and Item Groups:

Method Details

ItemSetStatusSkipped Skip or unskip the specified Workflow Item.

ItemSetStatusSkippedByItemId Skip or unskip an Item in the Current Item Group

with the specified Item Id.

NOTE: Only the first matched Workflow Item will

be skipped.

ItemSetStatusSkippedByOriginalItemId Skip or unskip an Item in the Current Item Group

with the specified Original Item Id.

NOTE: Only the first matched Workflow Item will

be skipped.

ItemGroupSetStatusSkipped Skip the specified Workflow Item Group.

ItemGroupSetStatusSkippedByItemId Skip an Item Group with the specified Item Id

and all unactioned items within it.

NOTE: Only the first matched Item Group with a

status of 'Not Started' or 'Open' will be skipped.

ItemGroupSetStatusSkippedByItemIdOriginal Skip an Item Group with the specified Original

Item Id and all unactioned items within it.

NOTE: Only the first matched Item Group with a

status of 'Not Started' or 'Open' will be skipped.

SkipCurrentItemGroup Skip the current Item Group and optionally add a

new Item Group to the end of the Workflow.

Page 92 of 95

Setting Items and Item Groups to 'Not Applicable'
The following methods exist in finWorkflowExecutor and allow setting Workflow Items and

Item Groups to 'Not Applicable':

Method Details

ItemSetStatusNotApplicable Set the specified Workflow Item to 'Not

Applicable' or 'Not Started' (if it was

already 'Not Applicable').

ItemSetStatusNotApplicableByItemId Set the specified Workflow Item to 'Not

Applicable' or 'Not Started' (if it was

already 'Not Applicable'). The Item must be

in the Current Item Group and have the

specified Item Id.

NOTE: Only the first matched Workflow

Item will be affected.

ItemSetStatusNotApplicableByOriginalItemId Set the specified Workflow Item to 'Not

Applicable' or 'Not Started' (if it was

already 'Not Applicable'). The Item must be

in the Current Item Group and have the

specified Original Item Id.

NOTE: Only the first matched Workflow

Item will be affected.

ItemGroupSetStatusNotApplicable Set the specified Workflow Item Group to

'Not Applicable'.

ItemGroupSetStatusNotApplicableByItemId Set an Item Group with the specified Item

Id and all unactioned items within it to 'Not

Applicable'.

NOTE: Only the first matched Item Group

with a status of 'Not Started' or 'Open' will

be affected.

ItemGroupSetStatusNotApplicableByItemIdOriginal Set an Item Group with the specified

Original Item Id and all unactioned items

within it to 'Not Applicable'.

NOTE: Only the first matched Item Group

with a status of 'Not Started' or 'Open' will

be affected.

Page 93 of 95

Appendix B – Frequently Asked Questions

Workflow Items

How do I get the Outcome of a Workflow Item?

• The finWorkflowItem object has a StatusOutcome String property.

• WorkflowExecutor.GetStatusOutcomeByItemIdOriginal

o Works on the current item group and is useful in determining the outcome of another

workflow item in the same group.

o Returns a String value and does not error if no item with the specified original item id is

found.

NOTE: When an item is completed from Script code, the outcome need not match any of the

items in the ItemOutcomes collection.

Also, even items that do not have an ItemOutcomes collection such as Check List Items can

have their StatusOutcome property set this way.

Why Does Completing an Item Group from 'BeforeItemAction' Skip the

Current Item?

• When completing an Item Group, e.g., using

finWorkflowExecutor.CompleteCurrentItemGroup, any incomplete items in the group are

set to 'Skipped'.

• Because the current item's status during the 'BeforeItemAction' event is still set to 'Not

Started', the current item will be skipped.

• The solution is to either:

o Use the 'AfterItemAction' event instead. This way, the item's status is 'Completed' so the

item will not be skipped.

Page 94 of 95

Workflow Item Groups

How do I add an Item Group from outside of the Workflow Type

Script?

Version 1 type Workflows can use the

finWorkflowFunctions.WorkflowAddItemGroupFromWorkflowType method to add Item

Groups to a Workflow from outside of the Workflow Type Script.

This method is not allowed for Version 2 type Workflows. Instead, a Workflow Executor must

be used as per the following example:

Dim Ok As Boolean

Dim WorkflowExecutor As finWorkflowExecutor

' Assume Success

Ok = True

' Initialsie

WorkflowExecutor = finBL.CreateWorkflowExecutor()

' Load Workflow

Ok = WorkflowExecutor.WorkflowLoadPk(workflow.Pk)

' Add Item Group

If Ok Then Ok = WorkflowExecutor.AddItemGroupFromWorkflowType("TEST", True, Index, True)

' Save

If Ok Then Ok = WorkflowExecutor.WorkflowSave()

' Refresh Workflow (since Workflow Executor has its own copy of the Workflow)

' NOTE: Not neccessary unless you need to access the up-to-date Workflow again

If Ok Then workflow.Refresh()

Page 95 of 95

Miscellaneous

How Do I Refresh Workflows on another Form, e.g., the Task

Mananger?

• Forms support the concept of "Notification Actions". This allows other forms (or Scripts) to

send messages to them, e.g., to tell the form to refresh a Workflows grid.

• Notification Actions are sent to a form using a "FormAction" type Application Shortcut.

• The format of the data that a Notification Action recieves is not easily available however,

the Form Details report (right-clicking on a Form's tab and selecting Special, Form Details)

allows you to see a list of Notification Actions that the form will respond to.

• The Task Manager form has a special "WorkfowRefresh" notification action which the

following Script sample shows how to use:

Public Function Main(parameters As ISKeyValueList) As Boolean

 ' Assume Success

 Main = True

 Dim ApplicationShortcut As ISApplicationShortcut

 Dim Params As ISKeyValueList

 Params = finBL.CreateKeyValueList()

 Params.SetBoolean("Added", True)

 ApplicationShortcut = finBL.CreateApplicationShortcutFormAction("TaskManager",

 "WorkflowRefresh",

 Params.ToXmlString(),

 False,

 True)

 Main = finBL.ExecuteApplicationShortcut(ApplicationShortcut)

End Function

	finPOWER Connect 3 Workflows (Version 2)
	Table of Contents
	Disclaimer
	Version History
	Introduction
	Workflow Type Version 2 Overview
	Workflow Type Changes
	Account Applications
	Current Workflow Item
	CanActionItem Script Event
	Workflow Recall Date
	'Open' Workflow Items
	Outcomes on 'None' Workflow Items

	Workflow Summary Script (Version 2)
	Workflow Type Options
	Show Completed Item Groups as a single group
	Show last Item Group as a separate group
	Show future Item Groups
	Show Items and Item Groups flagged as 'Not Applicable'
	Show skipped Items and Item Groups
	Show Train Stops Diagram

	Train Stops Diagram

	Workflow Type Script
	Completing Workflow Items from Script Code
	Auto Actioning Workflow Items from Script Code
	CompleteItem versus AutoActionItem
	BeforeItemAction versus AfterItemAction
	Automatic Questions and Item Groups
	Script Events
	AfterInitialise
	AfterItemGroupAdd
	BeforeProcess
	AfterItemGroupBegin
	BeforeItemAction
	CouldActionItem
	AfterItemAction
	BeforeItemReset
	AfterItemReset
	BeforeClose
	CanActionItem
	BeforeAccountDecline
	UpdateDocumentsList
	GetTrainStops
	GetWorkflowItemUserDataSummary
	GetWorkflowUserDataSummary

	Script Responsibilities
	Recording Logs
	Recording New Workflows
	Executing External Web Services

	Database Transactions

	Workflow Type Script Examples
	Set Workflow Items to 'Not Applicable' When Initialising
	Create New Item Group with Items from Script
	Skip Items in Group and Complete Group
	Skip Current Item Group and Add a new Item Group
	Set Check List Items Based Upon Question Outcome
	Creating Customised Documents
	Creating Customised Email Documents
	Creating Ad-Hoc Emails
	Automatic Client Credit Enquiry - Veda (New Zealand)
	Automatic Client Credit Enquiry – GreenId
	Automatic Applicant Credit Enquiry - Centrix (New Zealand)

	Documents
	Workflow Type Item Wizard
	Workflow Type Scripts
	'Send Document' Type Items
	Fully Scripted Solution

	Document Scripts
	Account SMS
	Account Email
	Client SMS
	Client Email
	Account Application SMS
	Account Application Email

	HTML Widgets
	Workflow Type Item
	HTML Widget

	Page Sets
	Workflow Type Item
	Page Set

	Appendix A – Helper Functions
	Workflow Functions (finWorkflowFunctions)
	Adding and Inserting Workflow Items
	Skipping Items and Item Groups
	Setting Items and Item Groups to 'Not Applicable'

	Appendix B – Frequently Asked Questions
	Workflow Items
	How do I get the Outcome of a Workflow Item?
	Why Does Completing an Item Group from 'BeforeItemAction' Skip the Current Item?

	Workflow Item Groups
	How do I add an Item Group from outside of the Workflow Type Script?

	Miscellaneous
	How Do I Refresh Workflows on another Form, e.g., the Task Mananger?

