
Documents/Development/finPOWER Connect/Version 3/Web Services/finPOWER Connect 3

Web Services Connectivity and Programming Guide.doc

finPOWER Connect 3
Web Services Connectivity and Programming

Guide

Version 3.03

25th May 2020

Page 2 of 68

Table of Contents

Disclaimer.. 4

Version History ... 5

Introduction ... 6

Limitations .. 7

System Requirements and Prerequisites .. 8

Help Resources ... 9

Web Services ... 11

Connectivity and Security .. 12

Encryption .. 12

Authentication ... 12

Setting up a Test Environment ... 13

Setup and Connection .. 13

Web Administrator .. 15

User .. 16

User (Token) .. 17

Client... 18

Signing In .. 19

Using the Web Services Test Form ... 20

Programming Languages ... 22

Microsoft .NET ... 22

Parsing using the XmlDocument .. 22

Deserialisation into a .NET Object .. 22

Authenticating (Signing In) .. 24

Web Roles ... 24

Web Subscribers .. 24

The Authentication Process ... 24

hashSalt .. 25

hash .. 25

Authentication Code Sample ... 25

Authentication Response .. 29

Supplying the Session Token with a Request .. 29

When to Re-Authenticate ... 29

Token-Based User Authentication .. 31

Dates .. 32

Javacript ... 32

Serialising and Deserialising XML .. 33

Serialisation .. 34

Visual Basic .. 34

C# .. 35

Deserialisation ... 36

Page 3 of 68

Visual Basic .. 36

C# .. 37

Serialising and Deserialising JSON .. 39

Serialisation .. 40

JavaScript .. 40

Visual Basic .. 40

Deserialisation ... 44

JavaScript .. 44

Visual Basic .. 44

Visual Basic Code Examples ... 48

Creating a new Visual Studio Project .. 48

Loan Application 1 (Visual Basic) .. 50

Overview ... 50

Files .. 50

Configuration .. 50

Running the Sample .. 53

Logo .. 53

Stylesheet .. 54

HTML and JavaScript ... 55

ASP.NET Web Methods ... 58

Custom Web Services .. 60

Troubleshooting .. 68

Timeout when Authenticating Client ... 68

Misconfigured Address Database ... 68

Page 4 of 68

Disclaimer
This document contains information that may be subject to change at any stage.

All code examples are provided "as is".

Copyright Intersoft Systems Ltd, 2020.

Page 5 of 68

Version History
Date Version Name Changes

07/03/2014 1.00 PH Created.

17/03/2014 1.01 PH Clarified that Web Services cannot currently be used for accessing external
resources.

20/03/2014 1.02 PH Added serialisation/ deserialisation section and samples.

09/04/2014 1.03 PH Added dates section.

02/05/2014 1.04 PH Updated information regarding session tokens and when to re-authenticate.

06/05/2014 1.05 PH Clarified section detailing session token in Authorization header.

06/06/2014 1.06 PH Added troubleshooting guide for address database issues and PDF sections.

21/07/2014 1.07 PH Updated ExecuteRequest sample.

21/07/2014 1.08 PH Support for external Web Services detailed in Limitations section.

12/08/2014 1.09 PH Custom Web Services section enhanced.

13/08/2014 1.10 PH Custom Web Service Enum deserialisation.

01/10/2014 1.11 PH Custom Web Service section used to note new "Execute (Parameters)"
option from Test Web Service form.

30/03/2015 1.12 PH Added link to Microsoft article in Introduction, Web Services section.

14/04/2015 1.13 PH Split out Custom Web Service related sections into a new finPOWER Connect
Custom Web Services Programming Guide document.

21/04/2015 1.14 PH Added Loan Application 1 (Visual Basic) sample documentation.

30/04/2015 1.15 PH Added sample JSON serialisation and deserialisation code.

22/07/2015 1.16 PH Updated LoanApplication1VB sample.

18/08/2015 1.17 PH Added AuthenticateUserToken Web Service.

30/09/2015 1.18 PH Mention new Web Subscriber IP White List.

12/07/2016 3.00 PH Updated for finPOWER Connect version 3.

19/02/2019 3.01 PH Updated screen shots and incorrect PDF title.

10/02/2020 3.02 PH Updated.

25/05/2020 3.03 PH Updated for new POST authentication methods.

Page 6 of 68

Introduction
This document is intended for software developers who would like to connect to the finPOWER

Connect Web Services over HTTP.

This document provides all the necessary information needed to connect to and perform

requests against the Web Services.

For information on installing and configuring the finPOWER Connect Web Services on a Web

Server, see the finPOWER Connect 3 Web Services Installation and Configuration

document.

NOTE: finPOWER Connect HTML Widgets and Portals both provide a model which makes it

easy to produce User Interfaces and use the finPOWER Connect business layer.

Consider these unless you must use Custom Web Services (e.g., to access finPOWER Connect

from a native App or an existing Website).

Page 7 of 68

Limitations
Where access to a resource external to the finPOWER Connect database is required and a built-

in Web Service does not exist to achieve this, it should be assumed that such access cannot

currently be achieved and therefore any Custom Web Services or Scripts that run within

finPOWER Connect as part of a Web Service call cannot access these resources.

This includes the following:

• Document Manager

o Accessing the Document Manager folder structure is not possible in the usual manner

from a Web Service.

• Document publishing involving Word or Excel VBA to create a document.

o Microsoft Office should never be run on a Web Server and therefore only a limited form

of Document publishing is available from a Web Service.

o NOTE: As of finPOWER Connect 2.02.06, the concept of 'Unattended Publishing' was

introduced. This is covered in the finPOWER Connect 3 Custom Web Services

Programming Guide document.

• Access to external Web Services, e.g.:

o Credit Bureau (Centrix, DecisionLogic etc)

o MotorWeb

WARNING: Any Custom Web Services or Scripts that attempt to access external resources

cannot be supported and cannot be guaranteed to work in future releases of finPOWER

Connect and the finPOWER Connect Web Services.

Unless listed in the table below, assume the external resource is not supported.

The following external Web Services are supported. The Web Services version at which support

was added is detailed below:

Service Version Details

Credit Sense 2.01.01.00 Comprehensive Web Service support.

Veda (Australia) 2.01.01.00 Limited Web Service support.

PPSR G2B (New Zealand) 2.02.02.00 Limited Web Service support.

Edentiti GreenId 2.02.05.00 Moderate Web Service support.

NOTE: Many external Web Services have only limited finPOWER Connect Web Services support

since it is anticipated that Custom Web Services will more likely be used to access the external

service.

Page 8 of 68

System Requirements and Prerequisites
• Since the finPOWER Connect Web Services use HTTP, the only programming requirement is

a development environment that allows HTTP and secure HTTP (HTTPS) requests to be

made.

o The application being developed can use any programming language and exist on any

platform providing the above is supported.

• A connection to a Web Server running the finPOWER Connect Web Services is required.

o This Web Server might be:

 Accessible over the Internet.

 Accessible over a private LAN.

 Running on the development PC (for testing purposes).

• The finPOWER Connect 3 Web Services Installation and Configuration

document details installation of the Web Services for testing purposes.

• From a development point-of-view, a solid knowledge of the following is recommended:

o HTTP connectivity.

o XML and/ or JSON.

• Most code samples are currently limited to Visual Basic (VB.NET).

Page 9 of 68

Help Resources
The finPOWER Connect Web Services have online help detailing all Web Services. This help is

available from:

• The finPOWER Connect Web Services Web Server via the API reference button on the Sign

In page:

• From within the finPOWER Connect Windows User Interface via the Test Web Services

form (Tools, Web, Test Web Services).

Page 10 of 68

o The help is available by selecting a Web Service on the Web Services tab, providing a

valid URL has been entered on the Connect page.

• This help is constantly evolving and is updated for every new Web Service that is added.

Page 11 of 68

Web Services
• All Web Services are based on the Microsoft Web API framework meaning:

o They use HTTP/ HTTPS as a transport protocol.

o They do not use SOAP and therefore no WSDL is available.

 XML (or JSON) can be parsed manually or, if using a language that supports it (e.g.,

VB.NET), deserialised into a simple object.

o They use a RESTful, RPC based approach meaning:

 Most services are fully URL-based, e.g., to retrieve a list of Accounts for a finPOWER

Connect Client, you would simply request a URL such as:

• /Api/Client/GetAccounts?clientId=C10000&includeQuote=true

o Unless otherwise specified, both XML and JSON are supported.

 Generally, only the HTTP response will contain XML/ JSON data but services that

require more than just simple URL parameters can POST either XML or JSON.

• The finPOWER Connect Web Services consist of many individual services.

o These services are organised into 'Controllers' which is simply a way of grouping related

services, e.g., the above URL example calls the GetAccounts service which is located in

the Client controller.

 NOTE: The Web Services help and the Test Web Services form within finPOWER

Connect organise their table of contents with a higher level of grouping for readability,

e.g., both Client and ClientWebMail controllers are grouped within a Client folder.

The following are useful articles for understanding Microsoft's Web API and REST services:

http://blogs.msdn.com/b/martinkearn/archive/2015/01/05/introduction-to-rest-and-net-web-

api.aspx

http://blogs.msdn.com/b/martinkearn/archive/2015/01/05/introduction-to-rest-and-net-web-api.aspx
http://blogs.msdn.com/b/martinkearn/archive/2015/01/05/introduction-to-rest-and-net-web-api.aspx

Page 12 of 68

Connectivity and Security
• Connectivity to the Web Services is via HTTP/ HTTPS.

o HTTP is fine for testing but secure HTTP (HTTPS) MUST be used in a production

environment.

o The HTTP link to Web Services may be over a private network or the Internet (public) or,

to an installation of the Web Services running on the same PC (usually for development

purposes only, using localhost).

Encryption
• All communication (in a production environment) takes place over a secure, encrypted HTTP

channel using SSL/ TLS.

o This is enabled by a certificate installed on the Web Server hosting the Web Services and

is outside of the scope of this document.

Authentication
• Most Web Services require authentication.

• Any application wishing to access the Web Services must have a Web Subscriber record

defined in the finPOWER Connect database.

o This record has an Id and a Secret key, both of which are required for authentication.

• Authenticated services must be passed a special Session Token as an HTTP header. This is

returned from the initial authentication request.

o The Session Token is valid for up to 24 hours.

WARNING: Authentication methods support both GET and POST.

If you are using the GET, IIS is more likely to record sensitive information in its log files

(depending on the server's configuration) since credentials are included in the URL.

Therefore, POST is the recommended method since it is less likely to be logged and is less

easily readable.

Page 13 of 68

Setting up a Test Environment
When programming against the finPOWER Connect Web Services, it is useful to be able to test

the Web Services without having to write any code.

finPOWER Connect provides a Test Web Services form for this purpose.

The following steps are required to set up a test environment.

NOTE: This assumes you can connect to a Web Server running the finPOWER Connect Web

Services. Installation and configuration of the Web Services is detailed in the finPOWER

Connect 3 Web Services Installation and Configuration document.

Setup and Connection
• Install the latest version of finPOWER Connect.

• Open finPOWER Connect.

o If available, open the finPOWER Connect database to which the Web Services connect.

 This is not necessary but does make the connection and testing process easier, e.g., if

you call a Web Service to add an Account, you can then view the Account directly from

within finPOWER Connect.

o If unavailable, open any finPOWER Connect database, e.g., the demonstration database.

• Ensure you are logged in as an administrator User.

• From the Tools menu, select Web, Test Web Services.

• On the Connect page, enter the URL of the Web Services to access, e.g.

NOTE: The Web Services URL will always end with /Api/.

• Click the Ping button to test that the Web Services are available.

• All going well, you should see a message like this:

Page 14 of 68

o NOTE: Ping is one of the few Web Services that do not require authentication.

• Now you can connect to the Web Services by specifying details of the user to connect as.

The User Type determines how you connect.

o Note that connecting as a finPOWER Connect User or a Client requires the Id and Secret

Key of a Web Subscriber to connect as.

o If you have the finPOWER Connect Web Services database loaded, you can add a new

Web Subscriber record (if required) as follows:

 From the Tools menu, select Web, Web Subscribers.

 Click the Add button and enter the following:

• Code: TEST

• Name: Test Web Services

 Click the Save button.

 Close the Web Subscribers form.

o If you do not have the finPOWER Connect Web Services database, you will need to

contact the database administrator and ask them to set up a Web Subscriber record for

you to use and to supply you with the Web Subscriber Id and Secret Key.

Page 15 of 68

Web Administrator

• Connecting as a Web Administrator requires only the Web Administration User Id and

Password. By default these are:

o User Id: webadmin

o Password: password

NOTE: The Web Administrator role is for use in the Web Services Administration facility and

would not generally be used by external applications.

Page 16 of 68

User

• Connecting as a finPOWER Connect User requires both the User Id and Password and also

the Id and Secret Key of a Web Subscriber to connect as.

• If you have the Web Services database open, you can select the Subscriber from the

dropdown. If not, you will need to be enter the details manually in the Subscriber

dropdown and Secret Key fields.

• Enter the credentials of a finPOWER Connect User, e.g.

o User Id: admin

o Password: admin

NOTE: The User must have been granted Web Access. This is configured within finPOWER

Connect via the Web Access page on the Users form (Tools, User Security, Users).

Page 17 of 68

User (Token)

• Connecting as a finPOWER Connect User using a token requires a finPOWER Connect-

generated Token and also the Id and Secret Key of a Web Subscriber to connect as.

• If you have the Web Services database open, you can select the Subscriber from the

dropdown. If not, you will need to be enter the details manually in the Subscriber

dropdown and Secret Key fields.

• Click the "Create" button to create a Token.

NOTE: The User must have been granted Web Access. This is configured within finPOWER

Connect via the Web Access page on the Users form (Tools, User Security, Users).

Also, Token-based logins must be enabled for the database (they are disabled by default)

using the Tools, Global Settings, Web, General page.

WARNING: Unlike the other authentication methods, connecting to Web Services using a

token requires that the database showing the Test Web Services form is the same one being

used by the Web Services.

Page 18 of 68

Client

• Connecting as a finPOWER Connect Client requires both the Client Id and Password and also

the Id and Secret Key of a Web Subscriber to connect as.

• If you have the Web Services database open, you can select the Subscriber from the

dropdown. If not, you will need to be enter the details manually in the Subscriber

dropdown and Secret Key fields.

• Enter the credentials of a finPOWER Connect Client, e.g.

o Client Id: C10000

o Password: Password1

NOTE: The Client must have been granted Web Access. This is configured within finPOWER

Connect via the Web Access page on the Clients form (Client, Clients).

Page 19 of 68

Signing In

• After entering the Web Administrator/ User/ Client details, click the Connect button to sign

in.

• You should see a message similar to this:

And a green box will appear in the top-right corner of the form to show that you have

connected successfully:

o If signing in was unsuccessful, you will see a message such as:

 Click OK and switch to the Web Services tab.

 Click the Response tab.

 The response should contain an XML error message which should help you determine

why signing in failed. The following example has removed attributes on the Error tag

for clarity):

Page 20 of 68

Using the Web Services Test Form
Now that you have successfully connected to the Web Services, you can test any Web Service

or view online help as follows.

• Switch to the Web Services tab.

• Locate and select the Web Service to test in the explorer.

o You can use the Quick Search box above the explorer to filter Web Services.

• The Help tab allows you to view the selected Web Service's help.

• The Request and Response pages allows you to view the information sent to and received

from the Web Services.

• For example:

o Type Client Accounts into the Quick Search box.

o Select the Client, GetAccounts Web Service.

o A list of parameters that this Web Service accepts is displayed along with help for the

Web Service, e.g.

o Enter any parameters, e.g.

 Client Id: C10000

 Include Quote: checked

o Click the Test button.

o The Response tab will automatically be selected and the results of the test will be

displayed, e.g.

Page 21 of 68

• By default, the response will be retrieved as XML. This can be changed from the Connect

page by changing the Format to JSON.

Page 22 of 68

Programming Languages
You may develop your application in the programming language of your choice, on the

platform of your choice. The majority of the code samples throughout this document however

use Visual Basic (VB.NET).

Most finPOWER Connect Web Services allow you to use either XML or JSON for transferring

data.

NOTE: No formal XML or JSON schemas are defined and the XML/ JSON responses may be

extended over time hence any parsing code should assume that the response may contain

additional nodes/ properties in the future.

Microsoft .NET
Microsoft .NET programming languages (Visual Basic and C#) allow the response returned

from a Web Service to be parsed in different ways, e.g., you may wish to parse an XML

response using an XmlDocument object or you could use .NET's built-in deserialisation to

automatically convert the XML (or JSON) into a simple .NET object.

The following are Visual Basic code examples of parsing an XML error response of:

Parsing using the XmlDocument

Private Sub ParseXml(xml As String)

 Dim Document As System.Xml.XmlDocument

 Dim Node1 As System.Xml.XmlNode

 Dim Node2 As System.Xml.XmlNode

 Dim Message As String

 Dim Code As String

 Dim InternalMessage As String

 ' Load XML Document

 Document = New System.Xml.XmlDocument()

 Document.LoadXml(xml)

 ' Get Root <Error> node

 Node1 = Document.SelectSingleNode("//Error")

 ' Get properties

 Node2 = Node1.SelectSingleNode("Message")

 If Node2 IsNot Nothing Then Message = Node2.InnerText

 Node2 = Node1.SelectSingleNode("Code")

 If Node2 IsNot Nothing Then Code = Node2.InnerText

 Node2 = Node1.SelectSingleNode("InternalMessage")

 If Node2 IsNot Nothing Then InternalMessage = Node2.InnerText

End Sub

Deserialisation into a .NET Object

Private Sub ParseXml(xml As String)

 Dim ErrorDetails As WSErrorDetails

 Dim ms As System.IO.MemoryStream

 Dim Obj As Object

Page 23 of 68

 Dim XmlSerializer As Serialization.XmlSerializer

 ' Deserialise

 Try

 ' Create Serialiser

 XmlSerializer = New Serialization.XmlSerializer(GetType(WSErrorDetails))

 ' Deserialise

 ms = New System.IO.MemoryStream(Encoding.UTF8.GetBytes(xml))

 ErrorDetails = DirectCast(XmlSerializer.Deserialize(ms), WSErrorDetails)

 Catch ex As Exception

 ' Failed

 Finally

 If ms IsNot Nothing Then ms.Close(): ms.Dispose()

 End Try

End Sub

<Xml.Serialization.XmlType("Error")>

Public Class WSErrorDetails

 Public Message As String

 Public Code As String

 Public InternalMessage As String

End Class

A more comprehensive example of deserialisation is given in the Deserialisation section.

Page 24 of 68

Authenticating (Signing In)
This section details the authentication process.

Most Web Service require that a special 'Session Token' is included in an HTTP header. This

Session Token is generated during the authentication process, itself a Web Service, and is valid

for 24 hours.

Web Roles
A different authentication service is used depending on the type of user that you are signing in

as. The type of user defines a 'Web Role' which determines which services can be used.

The Web Roles are:

• User (a finPOWER Connect User)

• Client (a finPOWER Connect Client)

• WebAdmin (the Web Services Administrator)

NOTE: You will only ever use User or Client since WebAdmin is used internally for

administering Web Services.

Web Subscribers
For an application to use Web Services, that application must first have a Web Subscriber

record defined in finPOWER Connect.

Web Subscribers are maintained in finPOWER Connect from the Tools menu, Web, Web

Subscribers.

Each Subscriber is given a unique Subscriber Id and also a Secret Key which are used

during the authentication process.

If successful, the authentication service returns a Session Token. This is tied to the Web

Subscriber's Secret Key therefore, if the Web Subscriber's Secret Key is changed (via the Web

Subscribers form), the Session Token will immediately become invalid.

NOTE: Web Subscribers can define an IP White List to ensure that requests are coming from a

known IP Address, i.e., the IP Address of the Web Server hosting the Web Application.

The Authentication Process
When authenticating, the Subscriber's Secret Key is never sent across the network. It is used

to produce a Hash which is sent with the authentication request.

An example GET request to authenticate a finPOWER Connect User is shown below:

GET https://
Ws3/Api/Authentication/AuthenticateUser?subscriberId=DEMO&userId=Admin&password=admin&hash=NxyOY%2BjZ
14QsT3OYJvdw0On9u3fj%2FH9VVVPiRq50EsM%3D&hashSalt=EMQMPSRCDP HTTP/1.1
Content-Type: application/json
Host: localhost:51149

The subscriberId, userId and password parameters are self-explanatory. The hash and

hashSalt are explained in the next section.

The corresponding POST request packages these parameters up as JSON and therefore does

not include them in the URL, e.g.:

Page 25 of 68

POST http://localhost:51149/Ws3/Api/Authentication/AuthenticateUser HTTP/1.1
Content-Type: application/json; charset=UTF-8
Host: localhost:51149
Content-Length: 164
Expect: 100-continue

{
 "subscriberId": "DEMO",
 "userId": "Admin",
 "password": "admin",
 "hash": "C/xymFJ0VOsYPEHfrBL4f3BKSer6tkCxjn68T/nbJs8=",
 "hashSalt": "MGYVJPQYHI"
}

hashSalt

The hashSalt parameter is simply a string of 10 random letters. The following Visual Basic code

sample forms a random string.

Rnd = New Random(CInt(Now.Ticks Mod Int32.MaxValue))

hashSalt = ""

For i = 1 To 10

 hashSalt &= Chr(65 + Rnd.Next(0, 25))

Next

hash

The hash parameter is an SHA256 hash produced by concatenating the Hash Salt, User Id,

Password and the Web Subscriber's Secret Key. The following pseudo code shows the process

of creating the hash:

s = hashSalt & userId & password & secretKey

hash = Sha256(s)

hash = Base64Encode(hash)

Authentication Code Sample

The following is a Visual Basic code example of signing in as a finPOWER Connect User. It

demonstrates how to create the Hash required by the authentication service and how to send a

request to the Web Services.

The resultant Session Token can then be used for performing authenticated requests.

The ExecuteRequest and CreateHash functions are taken directly from the Web Forms

examples in the /Samples folder of the Web Services application.

' Connection Constants

Const WEB_SERVICES_URL As String = "http://localhost/finPOWERConnectWS2/Api/"

Const WEB_SUBSCRIBER_ID As String = "CC"

Const WEB_SUBSCRIBER_SECRET_KEY As String = "1F673CE613414"

Const USER_ID As String = "admin"

Const USER_PASSWORD As String = "admin"

Public Sub Test()

 Dim Document As System.Xml.XmlDocument

 Dim ErrorMessage As String

 Dim Hash As String

 Dim HashSalt As String

 Dim Node1 As System.Xml.XmlNode

 Dim Nodes As System.Xml.XmlNodeList

 Dim Ok As Boolean

 Dim RequestUrl As String

 Dim ResponseText As String

 Dim SessionToken As String

 Dim StatusCode As Integer

 ' Assume Success

 Ok = True

Page 26 of 68

 ' Initialise

 Document = New System.Xml.XmlDocument()

 ' --

 ' Connect to Web Services as a finPOWER Connect User

 ' --

 If Ok Then

 ' Produce a hash (and a random hash salt) of the User Id and Password

 Hash = HashSha256(USER_ID & USER_PASSWORD, WEB_SUBSCRIBER_SECRET_KEY, HashSalt)

 ' Build Request URL

 RequestUrl = WEB_SERVICES_URL

 RequestUrl &= String.Format("Authentication/AuthenticateUser?subscriberId={0}&userId={1}&passwor

d={2}&hash={3}&hashSalt={4}", Server.UrlEncode(WEB_SUBSCRIBER_ID), Server.UrlEncode(USER_ID), Server

.UrlEncode(USER_PASSWORD), Server.UrlEncode(Hash), Server.UrlEncode(HashSalt))

 ' Execute Request

 Ok = ExecuteRequest(RequestUrl, "GET", "XML", "",

Nothing, "", ResponseText, StatusCode, ErrorMessage, Nothing) AndAlso StatusCode = HttpStatusCode.OK

 ' Parse Response

 If Ok Then

 ' Parse Response to retrieve Session Token

 Document.LoadXml(ResponseText)

 SessionToken = Document.SelectSingleNode("//SessionDetails/SessionToken").InnerText

 End If

 End If

 ' Error

 If Not Ok Then

 ' If ResponseText contains <Error>, this can be parsed as an XML document

 End If

End Sub

''' <summary>

''' Execute a Request (sending either nothing, text or binary data in the form of a Byte array) to

retrieve either a text or binary (Byte array) Response.

''' </summary>

''' <param name="requestUrl">

''' The Request URL.

''' </param>

''' <param name="httpMethod">

''' The HTTP Method, e.g., GET or POST.

''' </param>

''' <param name="contentType">

''' The Content Type for the HTTP Content-Type header or just 'XML' or 'JSON'.

''' </param>

''' <param name="requestText">

''' The Request Text or a blank String if not sending any text in the body of the request or if

sending binary data using the requestBytes parameter.

''' </param>

''' <param name="requestBytes">

''' The Request Bytes or Nothing if not sending binary data to the request.

''' </param>

''' <param name="sessionToken">

''' The Session Token or a blank String is using a unauthenticated Web Service.

''' </param>

''' <param name="responseText">

''' The Response Text. This will be Nothing if the content type of the Response did not indicate

that this was a text response, i.e., it did not begin 'text'.

''' </param>

''' <param name="responseBytes">

''' The binary Response. This will be Nothing if the content type of the Response indicates a text

response.

''' </param>

''' <param name="statusCode">

''' The HTTP Status Code received.

''' </param>

''' <param name="errorMessage">

''' An Error Message. This will only by populated if this function returns False.

''' </param>

''' <param name="response">

''' The Response object. May be useful for debugging purposes.

''' </param>

''' <returns>

''' A Boolean value indicating success.

''' </returns>

''' <remarks>

''' NOTE: This is a sample only and matches the function used in the Web Services Test form within

Page 27 of 68

finPOWER Connect. This sample may be subject to updating at any time.

''' </remarks>

Private Function ExecuteRequest(requestUrl As String,

 httpMethod As String,

 contentType As String,

 requestText As String,

 requestBytes() As Byte,

 sessionToken As String,

 ByRef responseText As String,

 ByRef responseBytes() As Byte,

 ByRef statusCode As Integer,

 ByRef errorMessage As String,

 ByRef response As System.Net.HttpWebResponse) As Boolean

 Dim Buffer(1023) As Byte

 Dim Bytes As Integer

 Dim Encoding As System.Text.UTF8Encoding

 Dim Ok As Boolean

 Dim MemoryStream As System.IO.MemoryStream

 Dim Request As System.Net.HttpWebRequest

 Dim Stream As System.IO.Stream

 Dim srText As System.IO.StreamReader

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 responseText = ""

 responseBytes = Nothing

 statusCode = 0

 errorMessage = ""

 response = Nothing

 ' Initialise

 Select Case UCase(contentType)

 Case "JSON" : contentType = "application/json"

 Case "XML" : contentType = "text/xml"

 End Select

 ' Create Web Request

 Try

 Request = DirectCast(System.Net.WebRequest.Create(requestUrl), System.Net.HttpWebRequest)

 With Request

 ' General

 .Method = httpMethod

 .ContentType = contentType

 .Timeout = 20000 ' 20 Seconds

 ' Add authorisation header

 If Len(sessionToken) <> 0 Then

 .Headers.Add("Authorization", String.Format("AuthFinWs token=""{0}""", sessionToken))

 End If

 ' Write Request Body

 If Len(requestText) = 0 AndAlso requestBytes Is Nothing Then

 ' None

 .ContentLength = 0

 Else

 ' Text/ Binary

 Try

 ' Encode Text as UTF8

 If Len(requestText) <> 0 Then

 .ContentType &= "; charset=UTF-8"

 Encoding = New System.Text.UTF8Encoding()

 requestBytes = Encoding.GetBytes(requestText)

 End If

 ' Content Length

 .ContentLength = requestBytes.Length

 ' Content

 Stream = .GetRequestStream()

 Stream.Write(requestBytes, 0, requestBytes.Length)

 Catch ex As Exception

 Ok = False

 errorMessage = ex.Message

 Finally

 If Stream IsNot Nothing Then

 Stream.Close()

 Stream.Dispose()

 End If

Page 28 of 68

 End Try

 End If

 End With

 Catch ex As Exception

 Ok = False

 errorMessage = ex.Message

 End Try

 ' Send Request and get Response

 Try

 Response = DirectCast(Request.GetResponse(), System.Net.HttpWebResponse)

 Catch ex As System.Net.WebException

 ' Not all exceptions should be treated as errors

 If ex.Response Is Nothing OrElse Not (TypeOf ex.Response Is System.Net.HttpWebResponse) Then

 Ok = False

 errorMessage = ex.Message

 Else

 ' Valid Response received

 response = DirectCast(ex.Response, System.Net.HttpWebResponse)

 End If

 Catch ex As Exception

 Ok = False

 errorMessage = ex.Message

 End Try

 ' Get Response details

 If Ok AndAlso response IsNot Nothing Then

 ' Response (as both a Byte array and Text to cater for both situations)

 If response.ContentLength = 0 Then

 ' No Response Content

 responseText = ""

 ReDim responseBytes(0)

 Else

 ' Get either Text or Binary Response

 If response.ContentType.StartsWith("text", StringComparison.OrdinalIgnoreCase) OrElse

InStr(response.ContentType, "/json", CompareMethod.Text) <> 0 Then

 ' Text

 srText = New System.IO.StreamReader(response.GetResponseStream())

 responseText = srText.ReadToEnd()

 srText.Close()

 Else

 ' Binary

 MemoryStream = New System.IO.MemoryStream()

 Stream = response.GetResponseStream()

 Do

 Bytes = Stream.Read(Buffer, 0, 1023)

 If Bytes > 0 Then MemoryStream.Write(Buffer, 0, Bytes)

 Loop While Bytes > 0

 responseBytes = MemoryStream.ToArray()

 End If

 End If

 ' Status Code

 statusCode = CInt(response.StatusCode)

 End If

 Return Ok

End Function

Public Function HashSha256(value As String,

 key As String,

 ByRef salt As String) As String

 Dim HashBytes As Byte()

 Dim i As Integer

 Dim rnd As Random

 Dim SaltValueKeyBytes As Byte()

 Dim Sha256 As System.Security.Cryptography.SHA256

 ' Generate Salt (could just as easily be passed in but this will generate a random one regardless)

 rnd = New Random(CInt(Now.Ticks Mod Int32.MaxValue))

 salt = ""

 For i = 1 To 10

 salt &= Chr(65 + rnd.Next(0, 25))

 Next

 ' Convert Salt+Value+Key into a byte array

 SaltValueKeyBytes = System.Text.Encoding.UTF8.GetBytes(salt & value & key)

 ' Hash

Page 29 of 68

 Sha256 = New System.Security.Cryptography.SHA256Managed()

 HashBytes = Sha256.ComputeHash(SaltValueKeyBytes)

 ' Base-64 encode

 Return System.Convert.ToBase64String(HashBytes)

End Function

Authentication Response

Each of the Authentication methods return a Session Details response, which includes a

Session Token and other details, e.g.

Supplying the Session Token with a Request

The Session Token returned when authenticating (signing in) must be supplied with all

authenticated requests (i.e., just about anything other than Ping).

In a typical Web application, the Session Token might be stored in Session state.

The Authentication Code Sample above demonstrated issuing an authenticated request to

retrieve a list of a Client's Accounts. The authenticated request included a special HTTP

Authorization header, e.g.:

GET http://localhost/finPOWERConnectWS2/Api/Client/GetAccounts?clientId=C10000

Content-Type: text/xml

Authorization: AuthFinWs token="0fb1121adfPi6BcHo48oIgTWMo9+ZA==:rW5lqC5"

NOTE: The token= portion of the header specifies the Session Token (this has been truncated

for clarity in the above example).

When to Re-Authenticate

As mentioned above, authenticating (signing in), returns a Session Token that must be sent

with any request that requires authentication.

The Session Token is valid for 24 hours, after which, supplying it with a request will fail.

Therefore, you may wish to consider the following scenarios and solutions:

• Never re-authenticate

o When the User (or Client) first signs in, store the Session Token in Session State.

Typically, for financial applications, Session State on a Web Server is set to a short

period, e.g., 20 minutes of inactivity.

Page 30 of 68

o Therefore, if you are sure that a User is never going to be continuously connected to your

Web application for more than 24 hours, this approach is suitable.

o This is the method the Client Connect sample uses.

• Re-authenticate a User/ Client after a set period

o If a User (or Client) is likely to remain signed in to your Web application for more than 24

hours, you may wish to re-authenticate after a set period, e.g., every 12 hours.

o When the User (or Client) first signs in, store the Session Token together with the

authentication time and the User (or Client's) Id and Password in Session State.

 NOTE: If using out-of-process Session State, you may wish to encrypt this

information as a precaution.

o Prior to performing a Web Service request, check if the Session Token is more than 12

hours old and, if so, re-authenticate using the Id and Password stored in Session State.

Update the Session Token and authentication time held in Session State.

• Ad-hoc access, i.e., no User or Client is signed in

o If your Web application has no concept of a User (or Client) signing in, e.g., an

application that provides a loan application form on a public Website, you will need to

store the credentials of a finPOWER Connect User somewhere in your application. You will

then need to do one of the following:

 Re-authenticate prior to performing a Web Service request. This provides a new

Session Token that you never need to store.

• NOTE: This approach may bloat the finPOWER Connect audit log.

 When first performing a Web Service request, authenticate and store the Session

Token together with the authentication time in Application State.

• Prior to performing a Web Service request, check if the Session Token is more than

12 hours old and, if so, re-authenticate and update the Session Token and

authentication time held in Application State.

Page 31 of 68

Token-Based User Authentication

As of finPOWER Connect 2.03.02, token-based authentication is supported.

This allows an external Web Application, if launched from within the finPOWER Connect

Windows interface, to be passed a special token for the currently logged in User. This token

can then be used by the external Web Application to authenticate (sign-in) without the User

having to re-enter their credentials.

Token-based authentication is implemented within finPOWER Connect via "WebServicesToken"

type Application Shortcuts.

E.g., if a Summary Page in finPOWER Connect contains a link with the following URL:

WebServicesToken?url=https%3A%2F%2Fwww.yourwebapplication.com%2Ftest.aspx%3Fwst%3D%5Btoken%5D&

openInternal=true&title=Your Web Application

When the User clicks the URL, finPOWER Connect will create a special token.

The URL parameter of the Application Shortcut which is:

https://www.yourwebapplication.com/test.aspx?wst=[token]

Will be updated to include the token, e.g.:

https://www.yourwebapplication.com/test.aspx?wst=
6JVAwQ0e7fGFEg3alxQ5xobSSqUym%2FS54AKr%2Fi%2F2YEId3qh3sQYkY%2Bstyc2VkBzM

And the URL followed.

The external Web Application should then do the following in the test.aspx page:

• Get the token from the URL (in this case, from the parameter named "wst").

• Use the Web Subscriber's Secret Key to create an SHA256 hash (and hash salt) of this

token.

o NOTE: A sample SHA256 hash function is included in the code sample earlier in this

secton.

• Call the Authentication/AuthenticateUserToken Web Service passing in the relevant

parameters.

NOTE: By default, token-based logins are disabled in finPOWER Connect. They can be enabled

from Tools, Global Settings, Web, General page.

A token expiry period can also be specified from this page. This defines how long the token

generated by finPOWER Connect is valid for. By default this is set to 60 seconds.

Page 32 of 68

Dates
Web Service dates use the ISO 8601 standard regardless of whether the date is passed as part

of a request URL or is included in an XML or JSON response.

Web Services return dates in UTC (Coordinated Universal Time) regardless of how they are

stored within the finPOWER Connect database or displayed in the finPOWER Connect Windows

interface.

WARNING: Any dates provided as parameters to Web Services will be parsed according to the

time zone on the Web Server. Therefore, it is advisable to always provide dates in UTC format.

Dates are covered in detail in the Dates topic of the Web Services API reference.

Javacript
In Javascript, when deserialising a JSON object, dates are treated as strings and are not

automatically converted to dates. This is explained fully in this article by Rick Strahl:

http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-

Dates

http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-Dates
http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-Dates

Page 33 of 68

Serialising and Deserialising XML
Some programming languages support serialisation and deserialisation of XML from and to an

object.

In many cases, this can make parsing a response (or forming a request) easier than dealing

directly with XML.

NOTE: This section is intended for external applications consuming the Web Services. For

Custom Web Service Scripts, see the finPOWER Connect Custom Web Services

Programming Guide document.

This section gives code samples of both serialisation and deserialisation. None of these

samples use the finPOWER Connect business layer.

Serialisation/ Deserialisation can be used with complex objects and collections (E.g., objects

that contain other objects). A Google search will provide many examples of how to achieve

this.

Page 34 of 68

Serialisation
Serialisation is the process of taking an object and automatically creating an XML String that

represents that object.

The following examples will all serialise the simple ClientDetails object detailed below into XML:

ClientDetails

 ClientId (String)

 FirstName (String)

 LastName (String)

 DateOfBirth (Date)

Each of the code samples contains a SerialiseObjectToXmlString function which returns a

Boolean value based upon whether it was successful or not. If unsuccessful, an error message

is returned instead of the XML.

Visual Basic

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim Xml As String

 ' Create Object

 ClientDetails = New clsClientDetails()

 With ClientDetails

 .ClientId = "C10000"

 .FirstName = "John"

 .LastName = "Smith"

 .DateOfBirth = New Date(1970, 9, 5)

 End With

 ' Serialise

 If SerialiseObjectToXmlString(ClientDetails, Xml) Then

 MsgBox(Xml)

 Else

 MsgBox(Xml, MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function SerialiseObjectToXmlString(obj As Object, ByRef xml As String) As Boolean

 Dim ms As System.IO.MemoryStream

 Dim Ok As Boolean

 Dim XmlSerializer As System.Xml.Serialization.XmlSerializer

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 xml = ""

 ' Serialise

 Try

 XmlSerializer = New System.Xml.Serialization.XmlSerializer(obj.GetType())

 ms = New System.IO.MemoryStream()

 XmlSerializer.Serialize(ms, obj)

 xml = System.Text.Encoding.UTF8.GetString(ms.GetBuffer(), 0, CInt(ms.Length))

 ms.Close()

 Catch ex As Exception

 ' Failed (return error message instead of XML)

 Ok = False

 xml = ex.Message

 Finally

 If ms IsNot Nothing Then ms.Dispose()

 End Try

 Return Ok

End Function

<System.Xml.Serialization.XmlType("ClientDetails")>

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

Page 35 of 68

 Public LastName As String

 Public DateOfBirth As Date

End Class

C#

public void Main()

{

 clsClientDetails ClientDetails;

 string Xml = "";

 // Create Object

 ClientDetails = new clsClientDetails {

 ClientId = "C10000",

 FirstName = "John",

 LastName = "Smith",

 DateOfBirth = new DateTime(1970, 9, 5)

 };

 // Serialise

 if(SerialiseObjectToXmlString(ClientDetails, ref Xml)) {

 System.Windows.Forms.MessageBox.Show(Xml);

 }

 else {

 System.Windows.Forms.MessageBox.Show(Xml, "Error", MessageBoxButtons.OK, MessageBoxIcon.Warning);

 }

}

public bool SerialiseObjectToXmlString(Object obj, ref string xml)

{

 System.IO.MemoryStream ms = null;

 bool Ok;

 System.Xml.Serialization.XmlSerializer XmlSerializer;

 // Assume Success

 Ok = true;

 // Initialise ByRef Parameters

 xml = "";

 // Serialise

 try {

 XmlSerializer = new System.Xml.Serialization.XmlSerializer(obj.GetType());

 ms = new System.IO.MemoryStream();

 XmlSerializer.Serialize(ms, obj);

 xml = System.Text.Encoding.UTF8.GetString(ms.GetBuffer(), 0, (int)ms.Length);

 ms.Close();

 }

 catch(Exception ex) {

 // Failed (return error message instead of XML)

 Ok = false;

 xml = ex.Message;

 }

 finally {

 if(ms != null) ms.Dispose();

 }

 return Ok;

}

[System.Xml.Serialization.XmlType("ClientDetails")]

public class clsClientDetails {

 public string ClientId;

 public string FirstName;

 public string LastName;

 public DateTime DateOfBirth;

}

Page 36 of 68

Deserialisation
Deserialisation is the process of taking an XML String and automatically creating and

populating an object from the content of the XML.

The following examples will deserialise the following XML into the simple ClientDetails object

used in the previous section.

ClientDetails

 ClientId (String)

 FirstName (String)

 LastName (String)

 DateOfBirth (Date)

Each of the code samples contains a DeserialiseObjectFromXmlString function which

returns a Boolean value based upon whether it was successful or not. If unsuccessful, an error

message is returned instead of the deserialised object.

Visual Basic

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim tempObject As Object

 Dim Xml As String

 ' Define XML

 Xml &= "<ClientDetails>"

 Xml &= "<ClientId>C10000</ClientId>"

 Xml &= "<FirstName>John</FirstName>"

 Xml &= "<LastName>Smith</LastName>"

 Xml &= "<DateOfBirth>1970-09-05T00:00:00</DateOfBirth>"

 Xml &= "</ClientDetails>"

 ' Deserialise into Object

 If DeserialiseXmlStringToObject(Xml, GetType(clsClientDetails), tempObject) Then

 ClientDetails = DirectCast(tempObject, clsClientDetails)

 MsgBox("Deserialised ClientId=" & ClientDetails.ClientId)

 Else

 MsgBox(CStr(tempObject), MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function DeserialiseXmlStringToObject(xml As String,

 objType As Type,

 ByRef obj As Object) As Boolean

 Dim ms As System.IO.MemoryStream

 Dim Ok As Boolean

 Dim XmlSerializer As System.Xml.Serialization.XmlSerializer

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 obj = Nothing

 ' Deserialise

 Try

 ' Create Serialiser

 XmlSerializer = New System.Xml.Serialization.XmlSerializer(objType)

 ' Deserialise

 ms = New System.IO.MemoryStream(System.Text.Encoding.UTF8.GetBytes(xml))

 obj = XmlSerializer.Deserialize(ms)

 ms.Close()

 Catch ex As Exception

 Ok = False

 obj = ex.Message

 Finally

 If ms IsNot Nothing Then ms.Dispose()

 End Try

Page 37 of 68

 Return Ok

End Function

<System.Xml.Serialization.XmlType("ClientDetails")>

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

 Public LastName As String

 Public DateOfBirth As Date

End Class

C#

public void Main(object sender, EventArgs e)

{

 clsClientDetails ClientDetails;

 Object tempObject = null;

 string Xml;

 // Define XML

 Xml = "";

 Xml += "<ClientDetails>";

 Xml += "<ClientId>C10000</ClientId>";

 Xml += "<FirstName>John</FirstName>";

 Xml += "<LastName>Smith</LastName>";

 Xml += "<DateOfBirth>1970-09-05T00:00:00</DateOfBirth>";

 Xml += "</ClientDetails>";

 // Deserialise into Object

 if(DeserialiseXmlStringToObject(Xml, typeof(clsClientDetails), ref tempObject))

 {

 ClientDetails = (clsClientDetails)tempObject;

 System.Windows.Forms.MessageBox.Show("Deserialised ClientId=" + ClientDetails.ClientId);

 }

 else

 {

 System.Windows.Forms.MessageBox.Show((string)tempObject, "Error", MessageBoxButtons.OK,

MessageBoxIcon.Warning);

 }

}

bool DeserialiseXmlStringToObject(string xml, Type objType, ref Object obj)

{

 System.IO.MemoryStream ms = null;

 bool Ok;

 System.Xml.Serialization.XmlSerializer XmlSerializer;

 // Assume Success

 Ok = true;

 // Initialise ByRef Parameters

 obj = null;

 // Deserialise

 try

 {

 // Create Serialiser

 XmlSerializer = new System.Xml.Serialization.XmlSerializer(objType);

 // Deserialise

 ms = new System.IO.MemoryStream(System.Text.Encoding.UTF8.GetBytes(xml));

 obj = XmlSerializer.Deserialize(ms);

 ms.Close();

 }

 catch (Exception ex)

 {

 Ok = false;

 obj = ex.Message;

 }

 finally

 {

 if (ms != null) ms.Dispose();

 }

 return Ok;

}

[System.Xml.Serialization.XmlType("ClientDetails")]

Page 38 of 68

public class clsClientDetails {

 public string ClientId;

 public string FirstName;

 public string LastName;

 public DateTime DateOfBirth;

}

Page 39 of 68

Serialising and Deserialising JSON
Some programming languages support serialisation and deserialisation of JSON (JavaScript

Object Notation) from and to an object. The most obvious is client-side JavaScript which

contains the JSON.stringify and JSON.parse methods to handle this.

This section is aimed more towards server-side serialisation and deserialisation.

NOTE: This section is intended for external applications consuming the Web Services. For

Custom Web Service Scripts, see the finPOWER Connect Custom Web Services

Programming Guide document.

This section gives code samples of both serialisation and deserialisation. None of these

samples use the finPOWER Connect business layer.

Serialisation/ Deserialisation can be used with complex objects and collections (e.g., objects

that contain other objects). A Google search will provide many examples of how to achieve

this.

Page 40 of 68

Serialisation
Serialisation is the process of taking an object and automatically creating a JSON String that

represents that object.

The following example serialises the simple ClientDetails object detailed below into JSON:

ClientDetails

 ClientId (String)

 FirstName (String)

 LastName (String)

 DateOfBirth (Date)

The code samples (apart from the JavaScript sample) contain a

SerialiseObjectToJsonString function which returns a Boolean value based upon whether it

was successful or not. If unsuccessful, an error message is returned instead of the JSON

object.

JavaScript

This client-side example relies on no external libraries since JSON serialisation is supported by

all modern Web browsers (and Internet Explorer as of version 8).

// Create JSON object

var o = {};

o.ClientId = "C10000";

o.FirstName = "John";

o.LastName = "Smith";

o.DateOfBirth = new Date(1970, 9, 23);

// Serialise

var jsonText = JSON.stringify();

Visual Basic

DataContractJsonSerializer

This first example uses the .NET DataContractJsonSerializer class which is available in the

System.Runtime.Serialization.Json assembly.

Imports System.Runtime.Serialization.Json

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim JsonText As String

 ' Create Object

 ClientDetails = New clsClientDetails()

 With ClientDetails

 .ClientId = "C10000"

 .FirstName = "John"

 .LastName = "Smith"

 .DateOfBirth = New Date(1970, 9, 23)

 End With

 ' Serialise

 If SerialiseObjectToJsonString(ClientDetails, JsonText) Then

 MsgBox(JsonText)

 Else

 MsgBox(JsonText, MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function SerialiseObjectToJsonString(obj As Object, ByRef jsonText As String) As Boolean

 Dim Ok As Boolean

 Dim ms As System.IO.MemoryStream

 Dim Serialiser As DataContractJsonSerializer

 Dim SerialiserSettings As DataContractJsonSerializerSettings

Page 41 of 68

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 jsonText = ""

 ' Serialise

 Try

 ' Serialise

 ' NOTE: Ensure that the standard date format is used

 ms = New System.IO.MemoryStream()

 SerialiserSettings = New DataContractJsonSerializerSettings()

 SerialiserSettings.DateTimeFormat = New Runtime.Serialization.DateTimeFormat("yyyy-MM-

dd'T'HH:mm:ssZ")

 Serialiser = New DataContractJsonSerializer(obj.GetType(), SerialiserSettings)

 Serialiser.WriteObject(ms, obj)

 ' Get JSON text

 jsonText = System.Text.Encoding.Default.GetString(ms.ToArray())

 Catch ex As Exception

 ' Failed (return error message instead of XML)

 Ok = False

 jsonText = ex.Message

 Finally

 If ms IsNot Nothing Then ms.Dispose()

 End Try

 Return Ok

End Function

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

 Public LastName As String

 Public DateOfBirth As Date

End Class

NOTE: By default, the DataContractJsonSerializer does not handle dates well hence we

must pass it a DataContractJsonSerializerSettings object which is only available in .NET

4.5 and later.

Newtonsoft.Json.NET Library

This next example uses the Newtonsoft.Json library which is preferred by many developers

and has become the standard in many of Microsoft's own Web examples.

To add the Newtonsoft library to a Visual Studio 2012 project, do the following:

• From the Tools menu, select Library Package Manager, Manage NuGet Packages for

Solution

• Enter json.net into the Search box in the top-right of the Manage NuGet Packages form

• Select the Json.NET entry:

Page 42 of 68

• Click the Install button.

The above steps will install the Newtonsoft Json.NET library and add references and a

packages.config file to the Visual Studio project.

Imports Newtonsoft.Json

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim JsonText As String

 ' Create Object

 ClientDetails = New clsClientDetails()

 With ClientDetails

 .ClientId = "C10000"

 .FirstName = "John"

 .LastName = "Smith"

 .DateOfBirth = New Date(1970, 9, 23)

 End With

 ' Serialise

 If SerialiseObjectToJsonString(ClientDetails, JsonText) Then

 MsgBox(JsonText)

 Else

 MsgBox(JsonText, MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function SerialiseObjectToJsonString(obj As Object, ByRef jsonText As String) As Boolean

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 jsonText = ""

 ' Serialise

 Try

 ' Serialise (ensure Enums as serialised as Strings rather than Integers)

 jsonText = Newtonsoft.Json.JsonConvert.SerializeObject(obj,

 New

Newtonsoft.Json.Converters.StringEnumConverter())

 Catch ex As Exception

 ' Failed (return error message instead of XML)

 Ok = False

 jsonText = ex.Message

 End Try

 Return Ok

End Function

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

 Public LastName As String

Page 43 of 68

 Public DateOfBirth As Date

End Class

NOTE: The above example configures the Newtonsoft serialiser to format Enums as Strings

rather than Integers.

NOTE: The Newtonsoft sample is much simpler than the DataContractJsonSerializer and

also handles dates correctly without any special configuration.

Page 44 of 68

Deserialisation
Deserialisation is the process of taking a JSON String and automatically creating and

populating an object from the content of the JSON.

The following examples will deserialise a JSON String into the simple ClientDetails object used

in the previous section. The exception to this is the JavaScript example which simply

deserialises into a JavaScript object.

ClientDetails

 ClientId (String)

 FirstName (String)

 LastName (String)

 DateOfBirth (Date)

Each of the code samples contains a DeserialiseObjectFromJsonString function which

returns a Boolean value based upon whether it was successful or not. If unsuccessful, an error

message is returned instead of the deserialised object.

JavaScript

This sample relies on no external libraries since JSON serialisation is supported by all modern

Web browsers (and Internet Explorer as of version 8).

var o = JSON.parse(jsonText);

window.alert(o.FirstName);

Visual Basic

DataContractJsonSerializer

This first example uses the .NET DataContractJsonSerializer class which is available in the

System.Runtime.Serialization.Json assembly.

Imports System.Runtime.Serialization.Json

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim tempObject As Object

 Dim JsonText As String

 ' Define JSON

 JsonText = ""

 JsonText &= "{'ClientId':'C10000',"

 JsonText &= "'FirstName':'John',"

 JsonText &= "'LastName':'Smith',"

 JsonText &= "'DateOfBirth':'1970-09-23T00:00:00Z'}"

 JsonText = Replace(JsonText, "'", Chr(34))

 ' Deserialise into Object

 If DeserialiseJsonStringToObject(JsonText, GetType(clsClientDetails), tempObject) Then

 ClientDetails = DirectCast(tempObject, clsClientDetails)

 MsgBox("Deserialised ClientId=" & ClientDetails.ClientId)

 Else

 MsgBox(CStr(tempObject), MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function DeserialiseJsonStringToObject(jsonText As String,

 objType As Type,

 ByRef obj As Object) As Boolean

 Dim Bytes As Byte()

 Dim ms As System.IO.MemoryStream

 Dim Ok As Boolean

 Dim Serialiser As DataContractJsonSerializer

 Dim SerialiserSettings As DataContractJsonSerializerSettings

Page 45 of 68

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 obj = Nothing

 ' Deserialise

 Try

 ' Get JSON text as byte array

 Bytes = System.Text.Encoding.ASCII.GetBytes(jsonText)

 ms = New System.IO.MemoryStream(Bytes)

 ' Deserialise

 ' NOTE: Ensure that the standard date format can be deserialised

 SerialiserSettings = New DataContractJsonSerializerSettings()

 SerialiserSettings.DateTimeFormat = New Runtime.Serialization.DateTimeFormat("yyyy-MM-

dd'T'HH:mm:ssZ")

 Serialiser = New DataContractJsonSerializer(objType, SerialiserSettings)

 obj = Serialiser.ReadObject(ms)

 Catch ex As Exception

 Ok = False

 obj = ex.Message

 Finally

 If ms IsNot Nothing Then ms.Dispose()

 End Try

 Return Ok

End Function

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

 Public LastName As String

 Public DateOfBirth As Date

End Class

NOTE: By default, the DataContractJsonSerializer does not handle dates well hence we

must pass it a DataContractJsonSerializerSettings object which is only available in .NET

4.5 and later.

Newtonsoft.Json.NET Library

This next example uses the Newtonsoft.Json library which is preferred by many developers

and has become the standard in many of Microsoft's own Web examples.

To add the Newtonsoft library to a Visual Studio 2012 project, do the following:

• From the Tools menu, select Library Package Manager, Manage NuGet Packages for

Solution

• Enter json.net into the Search box in the top-righht of the Manage NuGet Packages form

• Select the Json.NET entry:

Page 46 of 68

• Click the Install button.

The above steps will install the Newtonsoft Json.NET library and add references and a

packages.config file to the Visual Studio project.

Imports Newtonsoft.Json

Public Sub Main()

 Dim ClientDetails As clsClientDetails

 Dim tempObject As Object

 Dim JsonText As String

 ' Define JSON

 JsonText = ""

 JsonText &= "{'ClientId':'C10000',"

 JsonText &= "'FirstName':'John',"

 JsonText &= "'LastName':'Smith',"

 JsonText &= "'DateOfBirth':'1970-09-23T00:00:00Z'}"

 JsonText = Replace(JsonText, "'", Chr(34))

 ' Deserialise into Object

 If DeserialiseJsonStringToObject(JsonText, GetType(clsClientDetails), tempObject) Then

 ClientDetails = DirectCast(tempObject, clsClientDetails)

 MsgBox("Deserialised ClientId=" & ClientDetails.ClientId)

 Else

 MsgBox(CStr(tempObject), MsgBoxStyle.Exclamation)

 End If

End Sub

Public Function DeserialiseJsonStringToObject(jsonText As String,

 objType As Type,

 ByRef obj As Object) As Boolean

 Dim Ok As Boolean

 Dim jsonObject As Newtonsoft.Json.Linq.JObject

 ' Assume Success

 Ok = True

 ' Initialise ByRef Parameters

 obj = Nothing

 ' Deserialise

 Try

 jsonObject = Newtonsoft.Json.Linq.JObject.Parse(jsonText)

 obj = jsonObject.ToObject(objType)

 Catch ex As Exception

 Ok = False

 obj = ex.Message

 End Try

 Return Ok

End Function

Public Class clsClientDetails

 Public ClientId As String

 Public FirstName As String

Page 47 of 68

 Public LastName As String

 Public DateOfBirth As Date

End Class

NOTE: The Newtonsoft sample is much simpler than the DataContractJsonSerializer and

also handles dates correctly without any special configuration.

Page 48 of 68

Visual Basic Code Examples
Visual Basic code examples are included in the /Samples folder of the Web Services. All of

these samples are ASP.NET Web Forms and therefore contain an .aspx and an .aspx.vb file.

Each sample is included in a sub-folder which contains all of the required files.

The following table lists these samples:

Sample Description Other Details

ConnectUser1VB
Connect as a finPOWER Connect User and
retrieve a list of Client Accounts.

CustomLoanQuote1VB
Enter simple Loan and Client details and
use a custom Web Service to create a
Quote Account and a Client.

Script CustomLoanQuote1VB.xml must
be imported into finPOWER Connect.

LoanApplication1VB
Full 'payday' type Loan Application
example.

Script LoanApplication1VB.xml must be
imported into finPOWER Connect.

NOTE: As of version 2.02.06, these samples can be run directly from the /Samples folder of

the Web Services installation (although you may need to modify the constants at the top of

each sample page as detailed in the next section).

Creating a new Visual Studio Project
The following steps detail how to get the ConnectUser1VB sample running in a new Visual

Studio project.

• Create a new empty Web Application in Visual Studio 2012 (or Visual Studio Express 2012

for Web).

• Copy the entire contents of the Web Services /Samples/ConnectUser1VB folder into the

new Web Application.

o Include all files (except for any .xml files) in the Web Application project.

• Ensure you have a Web Subscriber record set up in finPOWER Connect.

o In finPOWER Connect, open the database that the Web Services are connected to.

o From the Tools menu, select Web and then Web Subscribers.

o Add a new Web Subscriber record with the following details:

 Code: TEST

 Description: Test Web Subscriber

• View the .vb portion of all sample pages and update the following constants to allow

connection to the Web Services:

o WEB_SERVICES_URL

o WEB_SUBSCRIBER_ID

o WEB_SUBSCRIBER_SECRET_KEY

Page 49 of 68

• Run the Web Application and ensure that the ConnectUser1VB.aspx page runs correctly.

o This is the simplest example, therefore ensure this runs correctly before attempting to

run any other examples.

• Some samples may require a custom Web Service Script.

o E.g., the CustomLoanQuote1VB sample requires that the corresponding .xml file is

imported into the finPOWER Connect Scripts library as follows:

 In finPOWER Connect, open the database that the Web Services are connected to.

 From the Admin menu, select Scripts.

 Use the Import action to import the .xml file.

 Save the Script.

Page 50 of 68

Loan Application 1 (Visual Basic)
This sample is included in the /Samples/LoanApplication1VB folder.

Overview

This is a fully self-contained example of using Web Services to provide a 'payday' type Loan

Application page.

Files

The sample consists of the following files:

• Logo.png

o The logo image used in the sample.

• Styles.css

o The Cascading Stylesheet file used in the sample.

• LoanApplication1VB.xml

o The Custom Web Services used by the sample.

• LoanApplication1VB.aspx

o The HTML and corresponding code-behind ASP.NET code.

Configuration

This sample is designed to be able to run against the demonstration database included with a

finPOWER Connect installation (finDemo_NZ.mdb).

This database contains the following:

• A 'DEMO' Web Subscriber record

o This has a Secret Key of ' 111111111111111111111111111111' which matches the

constant at the top of all Web Services samples.

• A 'DEMO' Account Application Type record.

• A 'PDL' Account Type record.

• Other records such as Client Types and Contact Methods required by this sample.

To configure the sample to run from within the Web Services installation (as opposed to

creating a new Visual Studio project):

• Create a C:\Demo Data folder on the Web Server hosting the Web Services.

o For the sake of a simple example (and not something that should be done in a production

environment), set the permissions on this folder to allow 'Everyone' full access:

Page 51 of 68

• Sign in to the Web Services Administration facility.

o Configure the Web Services to point to this database:

o And the finPOWER Credentials to connect as:

 User Id: admin

 Password: admin

• Open the demonstration database (C:\Demo Data\finDemo_NZ.mdb) in finPOWER Connect.

o Sign in as the same credentials as shown above, i.e.:

 User Id: admin

 Password: admin

• Import the Custom Web Service Script:

o Open the Scripts form (Admin, Scripts).

o Click the 'Import' action under the 'Utilities' heading on the left of the form.

o Locate the LoanApplication1VB.xml file and import it.

Page 52 of 68

By default, constants at the top of the Script determine the functionality of the sample, e.g.:

• CreateAccountApp

o Determines whether an Account (the default) or an Account Application will be created.

• VERIFICATION_METHOD

o Determines whether a verification Email or SMS should be sent to the Applicant as part of

the application process.

 Set to a blank String to disable verification.

• You will also need to modify the corresponding constant in the

LoanApplication1VB.aspx file.

• CONFIRMATION_METHOD

o Determines whether a configuration Email or SMS should be sent to the Applicant upon

completing the application.

 Set to a blank String to disable confirmation.

 You will also need to modify the corresponding constant in the

LoanApplication1VB.aspx file.

If you are using Verification or Confirmation Emails and SMS's, you will need to ensure that the

finPOWER Connect database is configured to allow this.

Typically, a Web Configuration (Tools, Web, Web Configurations) would be used but, for this

example, it is simpler to use Global Settings and User Preferences:

• Open the Global Settings form (Tools, Global Settings).

o Select the Messaging, Email page.

o Enter details of an SMTP server that is available from the Web Server, e.g.:

• Open the User Preferences form (Tools, User Preferences).

o Select the Messaging, Email page.

o Enter details of the Email Address under which to send the confirmation Email, e.g.:

NOTE: If using SMS for verification or confirmation, repeat the above steps but use the

Messaging, SMS pages in Global Settings and User Preferences to configure an SMS provider.

Page 53 of 68

Running the Sample

Using a Web browser, navigate to the sample, e.g.:

http://localhost/finPOWERConnectWs2/Samples/LoanApplication1VB/LoanApplication1VB.aspx

The sample provides a single page form with expandable sections into which loan application

information can be entered, e.g.:

NOTE: The sample will create either a 'Quote' Account and associated Client or an Account

Application depending on the constants configured at the top of the Custom Web Service in

finPOWER Connect.

Logo

The included logo file is the finPOWER Connect logo:

This file is 700 x 130 pixels.

However, code within the HTML page (LoanApplication1VB.aspx) sets the logo to scale to 50%

(i.e., 350 x 65 pixels):

<!-- Scale logo to 50% native size so it is clear on high DPI displays -->

Page 54 of 68

NOTE: The reason the logo is scaled to 50% of its original size is that is looks better on high

DPI displays, e.g., Windows in high DPI mode, Apple retina displays (Macs, iPhones, iPads

etc.).

Stylesheet

All styles used on the application form as stored in Styles.css.

Note the following:

• Date input dates are assigned an 'is-input-date' class.

o This class is also used in the page's JavaScript code to attach the popup calendar

(discussed later).

• The widths of each input field is defined in the stylesheet rather than as an inline style, e.g.:

o #txtPostcode {width:6em;}

This stylesheet also has a sample section to make the application page 'Responsive'.

NOTE: Response Web pages change their styles (often including their layout) based on the

device or screen size that the page is being viewed at.

The page styles are altered based on a media rule that invokes the enclosed styles when the

screen size falls to 800 pixels or below:

/* Responsive */

@media screen and (max-width:800px)

{

 body {margin:0; padding:0.4em 0 0 0;}

 .is-header {margin:0; padding:0;}

 .is-header > h1 {font-size:1.4em;}

 .is-body {margin:0; padding:0; border-radius:0;}

 .is-page {border-radius:0; border:none; border-right:none;}

 .is-page > h1 {border-radius:0;}

 .is-page > .is-form {padding-bottom:0.2em;}

 .is-page .is-form-column {display:block; margin-right:0;}

}

This causes the layout to change from:

Page 55 of 68

To the following when the browser window is made smaller or the page is viewed on a small

device:

NOTE: This is just a small example of how responsive styles can be used to affect a Web page.

Generally, the idea is to re-style the page to make better use or available screen-estate on

smaller device and also to lay it out in a more touch-friendly manor.

HTML and JavaScript

This sample is a single Web page with all HTML and JavaScript code defined in the

LoanApplication1VB.aspx file.

The following external libraries are also used:

• jQuery

• jQuery UI

o Only used for the 'datepicker' popup calendar used for date entry.

• Google Maps

o Used for address lookups.

NOTE: All external libraries are linked directly from Google rather than being supplied with the

sample.

HTML

The HTML follows a simple layout. CSS classes are applied to elements where applicable and

inline styles are kept to a minimum (generally just to hide elements by default).

Since the page uses JavaScript calls to perform AJAX calls to ASP.NET Web Methods defined

behind the page (discussed in a later section), the following block is included so that

Microsoft's Script Manager can be used (this makes it a little easier to make AJAX calls):

<!-- BEGIN Script Manager -->

<form id="form1" runat="server" style="display:none">

 <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePageMethods="true"></asp:ScriptManager>

</form>

<!-- END Script Manager -->

The page heading (including the logo) is next:

<div class="is-header">

 <!-- Scale logo to 50% native size so it is clear on high DPI displays -->

Page 56 of 68

 <h1>Loan Application</h1>

</div>

As discussed in the Logo section, the logo image is scaled to 50% of its actual size via

JavaScript defined in an inline onload event.

The main application form is enclosed in a div element with a CSS class of 'is-body'.

Each application page is defined by a div element with a class of 'is-page' and all input fields

within a div with a class of 'is-form', e.g.:

<!-- BEGIN Verify page -->

<div id="pageVerify" class="is-page" style="display:none">

 <h1 id="lblVerifyHeading">Verify Your ?</h1>

 <div class="is-form">

 <p id="lblVerifyDetails">Please enter your...</p>

 <input id="txtVerificationContact" class="is-input-text is-mandatory" maxlength="100" />

 <label></label>

 <button id="cmdVerify">Verify</button>

 A verification code has been sent.

 <div id="lblWarningVerify" class="is-warning" style="display:none"></div>

 </div>

</div>

<!-- END Verify page -->

NOTE: All pages except the first page (pageLoanDetails) are hidden using the following inline

CSS style:

 style="display:none"

The pages are then shown when required.

HTML label elements are used to define the caption for input fields and these define a 'for'

property that relates them to the input control. This means that when the label is clicked, the

correct input control will take focus, e.g.:

<label for="dateClientNextPayDate">Next pay date</label>

<input id="dateClientNextPayDate" type="text" class="is-input-date" />

Any input field that is required has a CSS class of 'is-mandatory', as does it's label, e.g.:

<label for="numPreferredLoanAmount" class="is-mandatory">How much do you want to borrow?</label>

<input id="numPreferredLoanAmount" class="is-input-number is-mandatory" />

JavaScript code (discussed in the next section) adds a red asterisk after all required labels,

e.g.:

JavaScript Overview

The sample makes heavy use of JavaScript including the external jQuery library.

Page 57 of 68

NOTE: For the sake of creating a self-contained sample, all JavaScript is defined within the

head section of the HTML page.

If is common to separate out JavaScript (particularly any common, helper methods) into

separate .js files.

The JavaScript first defines some constants to make it easy to tweak the sample, e.g.:

// Constants

var DATE_FORMAT = "d/m/yy";

var VERIFICATION_METHOD = "Email"; // Email, SMS or blank

var MIN_WEEKLY_PAY = 400; // Minimum allowable weekly pay

var MAX_LOAN_PERCENT = 1.5; // Maximum loan amount as a percentage of weekly pay

The initialisation code is defined within a jQuery block so that it is only run when the page is

fully loaded:

// ==========

// Initialise

// ==========

$(function () {

 // All initialisation code goes here

});

The initialisation code does the following:

• Initialises date fields to use the jQuery UI date picker.

• Adds a red asterisk after all required fields.

• Configures the 'Verify' page.

o Text will vary based upon whether an email address of mobile phone number is being

used for verification.

• Handles button clicks.

• Initialises address auto-completion (using Google Maps).

• Sets defaults, e.g.:

o Default loan amount.

• Handles other events, e.g.:

o Updates the 'After tax pay' label whenever the payment frequency changes.

• Focuses on the first input field.

JavaScript AJAX Calls

The following JavaScript function make AJAX calls to the Web Methods:

• GetCalculation

• SendVerificationCode

• Apply

NOTE: These functions are named after the Web Service that they call. This is just a

convention used in this sample.

Each of these functions follows exactly the same structure:

1. Hide any warning message elements, e.g.:

Page 58 of 68

2. Create the JSON object to send to the Web Method.

3. Validate:

a. Mandatory fields

b. Other validation, e.g., maximum loan amount.

4. If validation failed then update and show the warning message element and focus on the

field that failed validation.

5. Disable the button that was clicked.

6. Call the Web Method:

a. If this is successful then:

i. Enable the button that was clicked.

ii. Do other stuff such as showing the next page or displaying a loan summary.

b. If this failed then:

i. Show the error returned using the warning message element.

ii. Enable the button that was clicked.

NOTE: Calling of the Web Methods is performed via the PageMethods object generated by

ASP.NET in the Script Manager HTML block.

This is not strictly necessary (and does add a little overhead to the page) but it does make

AJAX calls simpler to implement.

JavaScript Helper Functions

Several helper methods exist to get and format values, e.g., get the value of a field as a

currency value or format a value as a currency value (including adding the dollar symbol).

The GetDateOnly function allows a JavaScript Date value to be returned with a UTC time of

midnight. This is essential when passing dates to Web Services (e.g., the applicant's next pay

date) since without this, the date will be formatted including a time zone offset which may

affect the date received by the Web server.

ASP.NET Web Methods

AJAX calls are made from the client-side JavaScript to Web Methods defined in the

LoanApplication1.VB.aspx.vb file.

The page defines the following constants to configure Web Service access and also the Custom

Web Service Script:

' Debug (better error messages returned)

Const DEBUG As Boolean = True

' Connection Constants

Public Shared WEB_SERVICES_URL As String = "*"

Const WEB_SUBSCRIBER_ID As String = "DEMO"

Const WEB_SUBSCRIBER_SECRET_KEY As String = "111111111111111111111111111111"

Const USER_ID As String = "admin"

Const USER_PASSWORD As String = "admin"

' Other Constants

Const SCRIPT_ID As String = "LAP1"

Page 59 of 68

NOTE: The WEB_SERVICES_URL is defined as "*". This simply points the sample to the Web

Services instance in which it is running (the shared constructor resolves this).

You will need to change this to a proper URL when creating your own project, e.g.:

http://localhost:51149/ws2/api/

All the Web Methods do it to authenticate against Web Services (to get a Session Token) and

then pass on the JSON object to the custom Web Service. Hence, the only code in each of the

Web Methods is the following:

<System.Web.Services.WebMethod()>

Public Shared Function GetCalculation(calculationDetailsJson As String) As Object

 Return CallCustomWebService("GetCalculation", calculationDetailsJson)

End Function

Which simply calls the CallCustomWebService method:

Private Shared Function CallCustomWebService(action As String,

 json As String) As Object

 Dim ErrorCode As String

 Dim ErrorMessage As String

 Dim ErrorMessageInternal As String

 Dim Ok As Boolean

 Dim SessionToken As String

 Dim RequestUrl As String

 Dim ResponseText As String

 Dim StatusCode As Integer

 ' Assume Success

 Ok = True

 ' Connect to Web Services

 Ok = ExecuteAuthenticateUser(SessionToken, ErrorMessage)

 ' Call Custom Web Service to Get Calculation

 If Ok Then

 ' Build Request URL

 RequestUrl = WEB_SERVICES_URL & String.Format("Custom/{0}?action={1}", SCRIPT_ID, action)

 ' Execute Request

 If ExecuteRequest(RequestUrl, "POST", "JSON", json, Nothing, SessionToken, ResponseText,

 Nothing, StatusCode, ErrorMessage, Nothing) AndAlso

 StatusCode = System.Net.HttpStatusCode.OK Then

 ' OK

 ElseIf Len(ErrorMessage) <> 0 Then

 ' Failed Executing Request

 Ok = False

 Else

 ' Parse Error Response (JSON format)

 Ok = False

 ParseErrorJson(ResponseText, ErrorCode, ErrorMessage, ErrorMessageInternal)

 ' Pass on the Status Code and modify the Error Message (based on the ErrorCode) if required

 Select Case ErrorCode

 Case Else

 ' Pass on the unmodified Error Message returned from the Custom Web Service

 End Select

 End If

 End If

 If Ok Then

 ' Return ResponseText (this is the JSON returned from the Custom Web Service)

 Return ResponseText

 Else

 ' Error

 Throw New ApplicationException(ErrorMessage)

 End If

End Function

Page 60 of 68

WARNING: When running in debug mode in a development environment, e.g., from Visual

Studio, the above code will stop when it hits the Throw New ApplicationException line.

Simply press F5 to continue.

NOTE: When running in a production environment, you may need to add the following line to

your web.config file so that when an Exception is thrown, the correct Error Message is returned

to the Client-side JavaScript (by default, the generic 'There was an error processing the

request.' message may be returned):

 <system.web>

 <customErrors mode="Off"/>

Custom Web Services

Importing the LoanApplication1VB.xml file into the finPOWER Connect Scripts library will create

a new 'Custom Web (Web API)' type Script with a code of 'LAP1'.

This Script is explained fully in this section.

Constants

The sample contains many constants.

The following constants must always be defined:

• CreateAccountApp

o Indicates whether to create an Account Application instead of a 'Quote' Account.

• AccountTypeId

o The Id of the Account Type to use when creating 'Quote' Accounts and also when adding

a 'Quote' to an Account Application.

The following constants must be defined if creating an Account Application:

• AccountAppTypeId

o The Id of the Account Application Type to create.

The following constants must be defined if creating a 'Quote' Account:

• AccountRoleId

o The Id of the Account Role to assign to the borrower.

• ClientGroupId

o The Id of the Client Group to use when creating the Client record for the Account.

• ClientTypeId

o The Id of the Client Type to use when creating the Client record for the Account.

• ContactMethodAddress, ContactMethodEmail, ContactMethodMobile,
ContactMethodPhone

o The Id of the Contact Methods to use when creating Contact Methods for the Client

record.

The follow constants can optionally be updated to determine the verification method and

confirmation method to use during the online application:

• VERIFICATION_METHOD

Page 61 of 68

o As part of the online application, you can force the applicant to enter a verification code

that is sent to them. This constant defines which verification method to use:

 Email

• An Email will be sent to the applicant.

• NOTE: This requires that an SMTP server is defined under either Global Settings or

the Web Configuration being used by the Web Services.

 SMS

• A text message will be sent to the applicant.

• NOTE: This requires that the finPOWER Connect database is licensed for the SMS

Add-On and that SMS details are configured.

• WARNING: Sending SMS messages has an associated cost.

 blank

• No verification will be sent to the applicant.

o NOTE: The LoanApplication1.aspx also defines a VERIFICATION_METHOD constant that

must match this.

• CONFIRMATION_METHOD

o Upon finishing the online application, you can send a confirmation message to the

applicant. This constant defines how to send the message:

 Email

 SMS

 Blank

• No confirmation message will be sent.

Configuration Validation

The first block of code in the Main method validates constants and licensing options.

NOTE: It is always good practice to validate as much as possible before even attempting to do

anything else.

This makes it easier to avoid issues in the Script code such as attempting to access an Account

Type that does not exist.

Multiple Web Services in a single Script

Partially to keep this sample self-contained and partially because it just makes sense, the

'LAP1' Custom Web Services Script actually handles multiple Web Services:

• GetCalculation

o Perform a loan calculation and return the results.

• SendVerificationCode

o Send the applicant a 'Verification Code' to either their email or mobile phone.

• Apply

o Add an application (either as a 'Quote' Account or an Account Application).

To enable the Script to handle multiple Web Services, the Script accepts an 'Action' parameter

and simply has a Select Case to handle the various actions, i.e.:

' Get Parameters

If Ok Then

 Action = request.Parameters.GetString("Action")

End If

Page 62 of 68

' Handle Action (this Web Service can handle several different actions)

If Ok Then

 ' Handle Action

 Select Case Ucase(Action)

 Case "GETCALCULATION"

 ' Get Calculation

 Return Action_GetCalculation(request)

 Case "SENDVERIFICATIONCODE"

 ' Send Verification Code

 Return Action_SendVerificationCode(request)

 Case "APPLY"

 ' Add Application

 If CreateAccountApp Then

 Return Action_ApplyAccountApp(request)

 Else

 Return Action_ApplyAccount(request)

 End If

 Case Else

 ' Unknown

 Return request.CreateErrorResponse(HttpStatusCode.BadRequest, String.Format("Failed to

execute custom Web Service Script '{0}'. Action '{1}' is not handled.", ScriptInfo.ScriptId,

Action), "Action.Unhandled", "")

 End Select

Else

Deserialising JSON Requests

All services in the Script assume that the request is a JSON-formatted string.

Proxy objects for each request are defined at the end of the Script, e.g.:

' ==

' Classes used for JSON serialisation/ deserialisation

' ==

Public Class clsCalculationDetails

 ' Calculation Details

 Public ClientPayFreq As String

 Public ClientNextPayDate As Date?

 Public ClientPayAmount As Decimal

 Public PreferredLoanAmount As Decimal

 Public PreferredRepayments As Integer

End Class

The finPOWER Connect business layer contains functionality for deserialising the request into

an object, e.g.:

If finBL.Runtime.WebUtilities.DeserialiseJsonStringToObject(request.RequestText,

 GetType(clsCalculationDetails), Obj) Then

 CalculationDetails = DirectCast(Obj, clsCalculationDetails)

Else

 Ok = False

End If

NOTE: Many proxy object properties use nullable types, e.g., ClientNextPayDate As Date?

The Script must handle nullable properties correctly, i.e., check the property has a value and

cast it to the correct date type, e.g.:

If calculationDetails.ClientNextPayDate IsNot Nothing Then

 ' Set first payment date to next pay date

 If CDate(calculationDetails.ClientNextPayDate) >= .OpeningDate Then

Serialising Response as JSON and Avoiding Date Issues

All services in the Script return objects. The Microsoft Web API will automatically serialise

these as JSON text.

Page 63 of 68

Objects for each response are defined at the end of the Script, e.g.:

Public Class clsCalculationResult

 ' Loan Calculation Result

 Public LoanAmount As Decimal

 Public TotalFees As Decimal

 Public TotalInterest As Decimal

 Public RepaymentAmount As Decimal

 Public PaymentCount As Integer

 Public PaymentRegular As Decimal

 Public FirstPaymentDate As Date

 Public FinalPayment As Decimal

 Public FinalPaymentDate As Date

 Public PaymentFrequency As String

End Class

And are returned from the Script as follows:

Return request.CreateResponse(HttpStatusCode.OK, CalculationResult)

If dates are returned directly from the business layer, e.g.:

account.Calculation.GetPaymentRegularFirst(FirstPaymentDate, PaymentRegular, False)

CalculationResult.FirstPaymentDate = FirstPaymentDate

The date MAY (depending on how it is held in the finPOWER Connect business layer) be

returned including a time portion or offset as the following JSON response (sent from a Web

Server in New Zealand) demonstrates:

{"LoanAmount":1000.0,

"TotalFees":312.00,

"TotalInterest":12.51,

"RepaymentAmount":1324.51,

"PaymentCount":4,

"PaymentRegular":331.13,

"FirstPaymentDate":"2015-04-27T00:00:00+12:00",

"FinalPayment":331.12,

"FinalPaymentDate":"2015-05-18T00:00:00+12:00",

"PaymentFrequency":"Weekly"}

This will cause confusion at some point, e.g., if the applicant is in a different time zone to the

Web Server.

What we should do (as detailed in the Dates section of the Web Services API Reference) is to

convert the dates accordingly, i.e.:

CalculationResult.FirstPaymentDate = finBL.Runtime.DateUtilities.CastToUtcDate(FirstPaymentDate)

This will cause the date to be returned in UTC format with no time offset, e.g.:

{"LoanAmount":1000.0,

"TotalFees":312.00,

"TotalInterest":12.51,

"RepaymentAmount":1324.51,

"PaymentCount":4,

"PaymentRegular":331.13,

"FirstPaymentDate":"2015-04-27T00:00:00Z",

"FinalPayment":331.12,

"FinalPaymentDate":"2015-05-18T00:00:00Z",

"PaymentFrequency":"Weekly"}

Page 64 of 68

WARNING: If you attempt to use JavaScript to deserialise and display these dates in an HTML

page, you must also be aware of possible time zone issues. This is discussed later in this

section.

Action_GetCalculation method

This method performs an Account calculation and returns the result.

This is achieved as follows:

• Deserialise the request into a clsCalculationDetails object.

• Create a finAccount object and update this from the request:

o This calls the UpdateAccountFromCalculationDetails method (next section) which also

validates the request.

• Returns a clsCalculationResult response.

UpdateAccountFromCalculationDetails method

This method validates the passed in Calculation Details and updates the supplied Account

object.

This is achieved as follows:

• Validate some basic calculation properties.

• Update the finAccount.Calculation object.

o This includes setting the First Payment Date if the applicant's next pay date was supplied

and is after the Account's Opening Date.

• Calculate the loan using the finAccount.Calculation.Calculate() method.

NOTE: In this sample, the maximum loan amount and the applicant's pay after tax are not

validated in the Script; they are only validated in the client-side JavaScript code before calling

the Web Service.

This is mainly to keep the sample simpler. In a real-life Web Service, any validation performed

on the client-side (e.g., from JavaScript), should also be performed on the server-side (i.e., in

the Web Service Script).

Action_SendVerificationCode method

This method sends a verification code to the applicant.

The verification code is sent to either an email address or mobile phone number depending on

the VERIFICATION_METHOD constant.

This is achieved as follows:

• First, check that verification is being used, i.e., VERIFICATION_METHOD is not blank.

• Deserialise the request into a clsSendVerificationDetails object.

o The Code property or this object is simply a non-static string. In this case, the date and

time on the applicant's PC formatted as a string.

o The VerificationContact property is the applicant's email address of mobile phone

number.

• Calls the CreateVerificationCode method (next section) to generate a 6 character

verification code.

• Sends the verification code to the applicant's email or mobile number.

o The email message is formatted as plain text for ease of copying and pasting.

Page 65 of 68

• Returns a simple OK response.

CreateVerificationCode method

This method generates a simple verification code based on code and verificationContact

parameters.

NOTE: The verification code is not designed to be a secure code, just something reasonably

unique that the end-user can easily type into a Web page.

In the sample, the code parameter is set by client-side JavaScript code and is simply the date

and time formatted as a string, e.g..:

{"Code":"\"2015-04-20T02:04:09.279Z\"","VerificationContact":"test@intersoft.co.nz"}

NOTE: The code could be anything but, by using the date and time, a different code will be

generated for the same email address of mobile phone number.

The verificationContact is either the applicant's email address or mobile phone number.

The following code generates a 6 letter verification code. The letters included are defined in a

CodeChars variable and consist of letters that are easy to read.

Private Function CreateVerificationCode(code As String,

 verificationContact As String) As String

 Dim CodeChars As String = "AEHJMNOPRSTUWXYZ"

 Dim VerificationCode As String

 Dim i As Integer

 Dim j As Integer

 Dim strTemp As String

 ' Create unsalted Hash

 strTemp = finBL.Runtime.Encryption.CreateUnsaltedHash(code & verificationContact & "123456",

 "vercode")

 ' Now create a nice, user-friendly 6 character code

 For i = 1 To 6

 ' Rotate the code string

 For j = 0 To Asc(Mid(strTemp, i, 1))

 CodeChars = Mid(CodeChars, 2) & Left(CodeChars, 1)

 Next

 ' Add to verification code

 VerificationCode &= Left(CodeChars, 1)

 Next

 Return VerificationCode

End Function

The code does the following:

• Generates a hash of the code and verificationContact parameters.

o 6 characters are added to the end, just in case.

o A key of "vercode" is used. This could be anything.

• The code then loops 6 times:

o Rotates the CodeChars variable based on the ASCII code of the nth letter of the hash.

o Appends this character to the verification code.

Page 66 of 68

NOTE: This code is just a simple example of how you might generate a verification code.

Action_ApplyAccount method

This method creates a 'Quote' Account and optionally sends a confirmation email message or

SMS.

Points to note are:

• The Action_ApplyValidateRequest method is used to validate the request.

o This is a separate function since it is used whether creating an Account or an Account

Application.

• Creates a Client and Account record within a database transaction.

o If either fail to save, the database transaction is rolled back.

o Uses the UpdateAccountFromCalculationDetails method to update the Account

Calculation.

 This is the same function used in the by the Action_GetCalculation method and is

also used when creating an Account Application.

• Optionally sends a confirmation email or SMS message.

o Based on the CONFIRMATION_METHOD constant.

o The Web Service will not fail if no confirmation is send.

 Instead, ConfirmationEmailSent and ConfirmationSmsSent properties are updated

on the response object (clsAddApplicationResult).

• The client-side JavaScript can then use these to display varying messages.

o The CreateConfirmationMessage and CreateConfirmationSubject methods are used

to generate the confirmation message.

• The Reference property on the response is set to the new Account's Id.

Action_ApplyValidateRequest method

This method validates the request send to the Apply Web Service.

The code does the following:

• Validates mandatory properties such as FirstName and LastName.

• Validates that the date of birth resolves to an age between 18 and 99.

o This also helps prevent data-entry errors such as the applicant entering a year of 1876.

• Validates the verification code:

o This uses the CreateVerificationCode method but:

 Instead of the email address or mobile number passed to the SendVerificationCode

Web Service, the email address or mobile number send to the Apply Web Service is

used.

• This prevents the applicant from supplying a different email address or mobile

number for verification versus the one they enter on the actual application.

CreateConfirmationMessage method

This method generates an email or SMS confirmation message.

The reference parameter is either the Account Id or Account Application Id.

The branchPk parameter is required since we are including the built-in email signature which is

Entity-specific.

If an email confirmation is being generated then note the following:

Page 67 of 68

• The message is formatted as HTML.

o The Apply_SendVerificationCode method generates a plain text email message since

this should not typically include much information and should be easy for the applicant to

copy and paste into the HTML application form.

o The message is generated using the finBL.DocumentFunctions.FormatEmailMessage

method. This does the following:

 Adds surrounding HTML tags and styles (since the htmlMessageTemplate parameter is

set to "*").

 Adds the current User's signature (since the signature parameter is set to "*").

• NOTE: This is for example's sake but may not make sense since the "current User"

is the USER_ID hard-coded as a constant at the top of the LoanApplication1.aspx.vb

file.

If you would like to generate an email message not using any of the built-in style or signature

information, this can easily be achieved as per the following example:

' Email (HTML)

strTemp = ""

strTemp &= "<div style='font:14pt Verdana'>"

strTemp &= "<p>Thank you for your application.</p>"

strTemp &= String.Format("<p>Your reference is {0}.</p>", finBL.HtmlEncode(reference))

strTemp &= "</div>"

Return strTemp

NOTE: When generating HTML emails, it is advisable to use inline styles and to test the email

on various platforms.

Some products such as Microsoft Outlook have a habit of playing around with HTML formatted

emails so they may not appear as expected.

CreateConfirmationSubject method

As per the CreateConfirmationMessage method but simply returns a subject for email

messages.

Page 68 of 68

Troubleshooting

Timeout when Authenticating Client
A timeout error when attempting to authenticate a Client via the

Authentication/AuthenticateClient service may be due to the following:

Misconfigured Address Database

If the Address database being used by the finPOWER Connect business layer is not available,

attempting to connect to it may cause a time out.

This may be an issue when attempting to authenticate as a Client since the response from this

service includes formatted Branch address details which involves accessing the Addressing

interface which will always attempt to initialise a connection to the Address database when first

accessed.

	finPOWER Connect 3 Web Services Connectivity and Programming Guide
	Table of Contents
	Disclaimer
	Version History
	Introduction
	Limitations

	System Requirements and Prerequisites
	Help Resources
	Web Services
	Connectivity and Security
	Encryption
	Authentication

	Setting up a Test Environment
	Setup and Connection
	Web Administrator
	User
	User (Token)
	Client
	Signing In

	Using the Web Services Test Form

	Programming Languages
	Microsoft .NET
	Parsing using the XmlDocument
	Deserialisation into a .NET Object

	Authenticating (Signing In)
	Web Roles
	Web Subscribers
	The Authentication Process
	hashSalt
	hash
	Authentication Code Sample
	Authentication Response
	Supplying the Session Token with a Request
	When to Re-Authenticate
	Token-Based User Authentication

	Dates
	Javacript

	Serialising and Deserialising XML
	Serialisation
	Visual Basic
	C#

	Deserialisation
	Visual Basic
	C#

	Serialising and Deserialising JSON
	Serialisation
	JavaScript
	Visual Basic
	DataContractJsonSerializer
	Newtonsoft.Json.NET Library

	Deserialisation
	JavaScript
	Visual Basic
	DataContractJsonSerializer
	Newtonsoft.Json.NET Library

	Visual Basic Code Examples
	Creating a new Visual Studio Project
	Loan Application 1 (Visual Basic)
	Overview
	Files
	Configuration
	Running the Sample
	Logo
	Stylesheet
	HTML and JavaScript
	HTML
	JavaScript Overview
	JavaScript AJAX Calls
	JavaScript Helper Functions

	ASP.NET Web Methods
	Custom Web Services
	Constants
	Configuration Validation
	Multiple Web Services in a single Script
	Deserialising JSON Requests
	Serialising Response as JSON and Avoiding Date Issues
	Action_GetCalculation method
	UpdateAccountFromCalculationDetails method
	Action_SendVerificationCode method
	CreateVerificationCode method
	Action_ApplyAccount method
	Action_ApplyValidateRequest method
	CreateConfirmationMessage method
	CreateConfirmationSubject method

	Troubleshooting
	Timeout when Authenticating Client
	Misconfigured Address Database

