
Documents/Development/finPOWER Connect/Version 3/Page Sets/finPOWER Connect 3 Page

Sets.docx

finPOWER Connect 3
Page Sets

Version 3.04

18th May 2017

Page 2 of 141

Table of Contents

Disclaimer.. 7

Version History ... 8

Introduction ... 9

Samples ... 9

Styles and Formatting .. 9

Security .. 9

Page Sets Overview .. 10

Page Sets Form .. 11

General .. 11

Options ... 11

Pages ... 12

Script Code ... 12

Constants ... 13

Usage ... 13

Form Types .. 14

Wizard .. 14

WizardMove .. 14

WizardRefresh .. 15

WizardButtonsUpdate .. 15

WizardValidate .. 16

CommandButtonClick .. 16

Tabbed Pages .. 18

Initialise ... 18

Command Buttons ... 18

CommandButtonClick .. 19

CurrentPageChanged ... 19

Single Page ... 20

Inline Tabs .. 21

Pages .. 22

Page Wizard .. 22

Page .. 22

Page Designer .. 22

Page Designer .. 23

Toolbar ... 24

Canvas ... 26

Tab Order Mode ... 28

Page Layout Modes ... 29

Flow ... 29

Flow Layout Properties ... 30

The Layout Rectangle .. 32

Positioning Page Objects on the Same Line ... 33

Page 3 of 141

Aligning with an existing Page Object .. 34

Auto-Sizing Width ... 35

Auto-Sizing Height to Fill Page .. 36

Positioned ... 37

PageResize Event .. 37

Page Objects .. 38

General .. 38

Tooltip ... 38

Field Hint ... 38

Group Tags .. 38

Buttons .. 39

Label .. 41

Label Styles .. 41

Custom Labels .. 41

Events ... 41

TextBox .. 42

ContextMenuListObjectType ... 42

Format ... 42

Events ... 42

ComboBox .. 44

List .. 44

Events ... 44

DBComboBox .. 46

ContextMenuListObjectType ... 46

Data Source ... 46

Events ... 47

NumberBox ... 48

Special Types ... 48

Other Properties .. 48

Events ... 48

DateBox ... 50

Special Types ... 50

Events ... 50

Date Cycle ComboBox .. 51

List .. 51

Events ... 51

DateTimeZone ... 52

Events ... 52

CheckBox .. 53

Option Button Style ... 53

Events ... 53

Button .. 54

Events ... 54

Page 4 of 141

HTML Editor .. 55

Formatting Toolbar .. 55

Hyperlinks .. 55

Events ... 55

HTML Panel ... 57

Printing .. 57

Hiding the Border .. 57

Events ... 58

Grid ... 59

Columns .. 59

Groupings .. 60

Data Binding... 60

Updating Cell Values .. 63

Row Selection ... 63

Printing .. 64

Saving and Loading Grid Layout .. 64

Other Properties .. 65

Events ... 65

FAQ ... 65

Image .. 68

Image Size Modes ... 68

Updating the Image ... 69

Events ... 69

Button Strip .. 70

Buttons .. 70

Border Style ... 70

Events ... 70

Columns Start ... 71

Column Break .. 72

Account Payment Details .. 73

Showing Account Payment Details ... 73

Reading Account Payment Details ... 73

Events ... 73

Advanced Layouts ... 74

Multi-Column Layouts ... 74

Using Page Objects Kept on the Same Line ... 74

Using Column Page Objects .. 75

Advanced Scripting ... 77

Script Objects .. 77

psh .. 77

mUI ... 79

mReports ... 81

Page Set Events ... 82

Page 5 of 141

PageSetActivate .. 82

ActionNotification .. 83

Showing Another Page Set .. 86

Showing Special Forms ... 87

Account Application Applicant ... 87

Account Application Collateral Item ... 88

Account Financial .. 89

Account Payment Arrangement Add ... 90

Account Schedule .. 91

Account Temp ... 92

Address Search ... 93

Bank Account Enquiry Wizard ... 95

Client Temp .. 96

Company Lookup .. 97

Credit Enquiry Wizard .. 100

New Client Wizard ... 101

PPSR Search Wizard .. 102

Security Statement Item .. 103

Running an Action Script ... 105

Parameters ... 106

Using Group Tags .. 107

Multiple Tags .. 108

Other Group Functions ... 109

Application Shortcuts .. 110

Accessing the Parent Form .. 111

Action Scripts ... 111

Appendix A – Guidelines .. 113

Layout Guidelines .. 114

General .. 114

Page Object Widths ... 114

Page Object Spacing .. 115

Text Formatting and Other Guidelines .. 116

General .. 116

Wizards ... 117

Appendix B – FormShow Application Shortcuts ... 118

Overview .. 119

Execute Documents wizard.. 121

Appendix C – Samples ... 122

Client Marketing Wizard (SMPL.CMK) .. 123

Pages .. 124

Functionality ... 125

Range Lookups ... 127

Add or Edit Client Form(SMPL.CLI) ... 129

Page 6 of 141

Pages .. 130

Functionality ... 131

Custom Account Payment Wizard (SMPL.AP) ... 133

Pages .. 134

Functionality ... 135

Simple Loan Quote Form (SMPL.LQ) ... 137

Pages .. 138

Functionality ... 139

Page 7 of 141

Disclaimer
This document contains information that may be subject to change at any stage.

All code examples are provided "as is".

This document may reference future functionality not currently available in the release version

of finPOWER Connect.

Copyright Intersoft Systems Ltd, 2014-2017.

Page 8 of 141

Version History
Date Version Name Changes

25/06/2014 1.00 PH Created.

26/06/2014 1.01 PH Updated after JR review.

15/07/2014 1.02 PH Updated for changes made in build 2.01.01.00 + FAQ sections.

05/08/2014 1.03 PH New functionality and information, e.g., executing an Action Script and
Query and Report details.

05/08/2014 1.04 PH Disclaimer updated and Page Set Events section added.

06/08/2014 1.05 PH Updated for 'Inline Tabs' type Page Sets.

13/08/2014 1.06 PH Notification actions clarified.

19/08/2014 1.07 PH Added ExectionAction methods to Page Set Handler.

29/08/2014 1.08 PH FormHeadingColour added for v2.02.00.

23/09/2014 1.09 PH GetCodeDescriptionListFromEnquiryAction documented.

20/10/2014 1.10 PH Examples of using flags and colour blocks in grid columns and clearing

grids.

18/11/2014 1.11 PH Grid events and selected vs active rows clarified plus other tweaks.

26/11/2014 1.12 PH New FormShowCompanyLookup method.

22/12/2014 1.13 PH Updated for new HTML Panel and Grid functionality.

07/01/2015 1.14 PH Icon enhancements, e.g., when setting grid cell value.

12/01/2015 1.15 PH PageSetActivate event enhancements.

13/03/2015 1.16 PH Account Application special forms detailed.

07/04/2015 1.17 PH Updated Image Page Object type to show Icon code.

05/05/2015 1.18 PH Updated for new grid save/ load layout methods.

23/07/2015 1.19 PH Updated for new FormShowSecurityStmtItem method.

14/08/2015 1.20 PH Added HTML Editor type Page Objects.

14/09/2015 1.21 PH HTML Editor now has an option to follow hyperlinks when read-only and
Number Boxes now have an Allow Blank property.

28/09/2015 1.22 PH Added clarification of how to access the Parent Form from a Page Set when
opened modal/ pseudo-modal from an Application Shortcut.

16/10/2015 1.23 PH Added StringListCsv type columns.

25/01/2016 1.24 PH Added FormShowAccountTemp and FormShowClientTemp methods and grid
row Visible property. Plus support for Credit Enquiry and PPSR Search
forms.

12/07/2016 3.00 PH Updated for finPOWER Connect version 3.

07/11/2016 3.01 PH Enter and Leave events added.

17/01/2017 3.02 PH Added 'DateTimeZone' Page Object.

24/03/2017 3.03 PH FormShowAccountPaymentArrangementAdd method added.

18/05/2017 3.04 JR Clarified Change Event not fired when Value changed in Code.

Page 9 of 141

Introduction
This document discusses finPOWER Connect Page Sets and is focused on the creation and

configuration of Page Sets.

Page Sets require that finPOWER Connect is licensed for the Page Sets Add-On.

If a Page Set is being created for use with Account Applications, this document should be used

in conjunction with the finPOWER Connect 3 Account Applications document.

Samples
Several Page Set samples are available. Each of these is documented in Appendix C –

Samples.

The sample Page Sets are included within the finPOWER Connect setup and are stored in the

[ApplicationFolder]/Templates/SampleScripts folder.

NOTE: Any samples relating to Account Applications are detailed in the finPOWER Connect 3

Account Applications document.

Styles and Formatting
Details on styling and formatting Page Sets so that they look similar to built-in finPOWER

Connect forms is given in Appendix A – Guidelines.

Security
When querying the finPOWER Connect database, always ensure that your SQL WHERE clause

contains any filters relevant to the current User, e.g.:

 sqb.sqlWhere.Append(finBL.CurrentUserInformation.FilterClientSqlWhere)

Variations on this exist for Accounts, Account Applications and Security Statements.

Page 10 of 141

Page Sets Overview
• Page Sets allow custom User Interface forms to be created in finPOWER Connect.

o These forms can be either wizards, tabbed or single page forms.

o Like Windows forms, they are event driven and thus provide far more control over the

interface than other customisation mechanisms such as Parameter Sets.

• Page Sets rely heavily on Scripting.

o Page Set Scripts have access to the full finPOWER Connect business layer functionality.

• Page Sets are Windows based and there is no concept of a Page Set running in a Web

environment.

• Page Sets can contain one or more pages of information.

o Pages contain Page Objects such as Text Boxes, Grids, HTML Panels etc.

o Pages can be set to 'Flow' layout which positions the Page Objects automatically. This

allows pages to be created much more quickly than 'Positioned' layout where Page

Objects are individually positioned on the page.

Page 11 of 141

Page Sets Form
The various pages on the Page Sets form are described in this section. Many properties of Page

Sets are expanded on in later sections.

General
General details.

• Code and Description

o Code:

 A unique code up to 10 characters long.

o Active:

 Inactive Page Sets may still be run however, they do not show when creating new

records, e.g., in the Page Set dropdowns on the Account Application Types form.

o Description:

 A description of the Page Set, up to 50 characters long.

• Beta Status

o You can flag a Page Set as being Beta, e.g., still undergoing testing. This will append the

text '(Beta)' to the form title when running the Page Set.

• Notes

o Notes regarding the Page Set.

Options
Miscellaneous options. These mainly relate to how the Page Set form will look when the Page

Set is run.

• Form Type

o Form Type:

 Page Sets can be one of three form types:

• Single Page

• Tabbed Pages

• Wizard

• Inline Tabs

 These are described in detail in the Form Types section.

o Minimum Form size

 Width:

• The minimum width to size the Page Set form. If unspecified, 400 pixels (px) is

assumed.

 Height:

• The minimum height to size the Page Set form. If unspecified, 400px is assumed.

o Form Heading and Title

 Show Form Heading?

• Indicates whether to display a Form Heading region. The Form Heading is the white

block containing a bold title and a smaller summary underneath and appears on

most forms within finPOWER Connect.

Each Page in the Page Set can define a Heading and Summary which are displayed

in the Form Heading region.

 Form Title:

Page 12 of 141

• By default, the title of the Page Set form is set to the Page Set's Description. This

can be overridden here.

• Command buttons

o Show 'OK' button?

 Indicates whether to display an 'OK' button on the form.

NOTE: Not applicable to Form Type 'Wizard'.

 Caption:

• The caption to display on the 'OK' button.

NOTE: This will, by default, be 'Finish' rather than 'OK' if the Form Type is 'Wizard'.

o Show 'Cancel' button?

 Indicates whether to display a 'Cancel' button on the form.

NOTE: Not applicable to Form Type 'Wizard'.

 Caption:

• The caption to display on the 'Cancel' button.

o Show 'Save' button?

 Indicates whether to display a 'Save' button on the form.

 Caption:

• The caption to display on the 'Save' button.

o Show 'Print' button?

 Indicates whether to display a 'Print' button on the form.

 Caption:

• The caption to display on the ' Print' button.

Pages
Displays a list of Pages defined for the Page Set.

A preview of the Page selected in the Grid is shown on the right and a summary of the Page is

shown below.

Pages can be added, deleted, edited and re-ordered.

Editing of Pages is described later in this document.

Script Code
Page Sets use Script code for almost everything. It is not possible to have a functional Page

Set without at least some Script code running behind the scenes.

Unlike many other Scriptable objects (Scripts, Documents, Queues etc.), a Page Set's Script

does not have a Main method. The Script object is created when the Page Set is run and is

therefore 'stateful', i.e., any member variables defined within the Script code will retain their

values between calls. This is unlike most finPOWER Connect Scripts which are 'stateless', i.e.,

the Script object is created, the Main method called and then the Script object destroyed.

NOTE: Right-clicking a Page Object (or the Page background) on the preview on the Pages

page shows a list of events. Selecting one of these events will either insert or go to an existing

event handler in the Script. Events are shown in blue in the context menu if they already have

a handler in the Script code.

Page 13 of 141

Constants
Like any other admin library that uses Scripts, Constants can be defined on this page and used

by the Script.

Usage
Displays a list of places where this Page Set is used within finPOWER Connect, e.g., where the

Page Set is used by an Account Application Type.

NOTE: This page only shows where there is a 'direct' usage of the Page Set, e.g., between

Admin Libraries. Referencing a Page Set elsewhere, e.g., from a Task Manager Folder, will not

show on this page.

Page 14 of 141

Form Types
Page Sets can be configured to use one of three different form types as well as the special

'Inline Tabs'. These are described in this section.

NOTE: Under certain circumstances, the Form Type defined on the Options page of the Page

Sets form may be overridden, e.g., an Account Application may display a 'Wizard' type Page

Set for initial data capture but may revert to a 'Tabbed Pages' form once data entry has been

completed.

Wizard
Wizard Page Sets should be used where data entry needs to be completed in a linear fashion

and where branching may occur. E.g., if entering Client details, you may wish to display a

different page depending on whether the Client is an Individual or Company.

By default, a Wizard will move though all Active pages defined on the Pages page in sequence.

A wizard has Cancel, < Back, Next > and Finish buttons to allow navigation and works as

follows:

• When the wizard is first displayed and when moving forward to the next page (using the

Next > button), the WizardMove event is called.

o The Script can then cause a page to be skipped by setting e.ShowPage = False.

• The WizardRefresh event is called when the page is first displayed and when moving

forward through the wizard.

o This is NOT called when moving backwards.

o Allows the Script to load information for the Page Objects on this page if necessary or

update the state of Page Objects.

• When moving forward through the wizard, the WizardValidate event is called.

o This is NOT called when moving backwards.

o Allows the Script to validate the data entered on the current page and prevent the User

moving to the next page.

o The Script indicates that a page is not valid by setting e.Failed = True.

• When a page is displayed, the WizardButtonsUpdate event is called.

o Allows the Script to tweak the wizard buttons, e.g., disable the Next > button and

enable the Finish button if the Script detects that the User is on the last page of the

wizard (but it is not really the last page).

• When the Finish button is clicked, the WizardValidate event is first called and, providing

this is successful, the CommandButtonClick event will be called.

Event handlers can be added to the Script by right-clicking the Page background when in edit

mode. These events are described below.

WizardMove

This event allows the Script to decide whether or not to display a particular wizard page.

Inserting an event handler will create a sample event handler Script method which contains a

Select Case block for each page in the Page Set.

Setting e.ShowPage = False will cause the page to be skipped, e.g.:

Public Sub PageSet_WizardMove(sender As Object,

 e As finPageSetHandlerWizardMoveEventArgs) Handles Me.WizardMove

 Select Case e.PageId

 Case "ClientType"

 Case "Individual"

 If chkClientIsCompany.Value Then e.ShowPage = False

Page 15 of 141

 Case "Company"

 If Not chkClientIsCompany.Value Then e.ShowPage = False

 End Select

End Sub

WizardRefresh

This event allows the Script to perform some action when a page is moved forward to, e.g.,

populate Page Objects, bind a collection to a grid or update the state of Page Objects based on

information entered on an earlier page.

Inserting an event handler will create a sample event handler Script method which contains a

Select Case block for each page in the Page Set.

WizardButtonsUpdate

By default, the < Back, Next > and Finish buttons will be enabled and disabled

automatically, e.g., if the User is on the first page of the wizard, the < Back button will be

disabled; if they are on the last page, the Finish button will be enabled and the Next > button

disabled.

There may be occasions where you may wish to override this functionality, e.g.:

• A wizard that you can finish from any page rather than just the last page.

• A wizard where the last page will never be shown due to some earlier choice. In this case,

you may wish to enable the Finish button and disable the Next > button.

The following sample updates the state of the Finish and Next > buttons based on the current

wizard Page:

Public Sub PageSet_WizardButtonsUpdate(sender As Object,

 e As finPageSetHandlerWizardButtonsUpdateEventArgs) Handles

Me.WizardButtonsUpdate

 e.FinishEnabled = (e.PageId = "Individual" OrElse e.PageId = "Company")

 e.NextEnabled = Not e.FinishEnabled

End Sub

NOTE: The e object properties relating to standard wizard buttons will always be set to their

default states every time this event is called, e.g., e.FinishEnabled will always be True on

the last page of the wizard but False for all other pages. These values can then be overridden

if required; although, attempting to enable the Next > button on the last page of the wizard

or the < Back button on the first page of the wizard will have no effect.

Although command buttons can be updated via the psh.CommandButtons collection, it is

advisable to only use the WizardButtonsUpdate event for wizard type Page Sets.

If you need to force the WizardButtonsUpdate event to fire from your Script, e.g., use the

psh.PerformWizardButtonsUpdate() method.

The following sample has CheckBoxes to enable and disable the Next > and Print buttons:

Public Sub chkEnableNext_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkEnableNext.Change

 ' Refresh wizard buttons

 psh.PerformWizardButtonsUpdate()

End Sub

Public Sub chkEnablePrint_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkEnablePrint.Change

 ' Refresh wizard buttons

 psh.PerformWizardButtonsUpdate()

End Sub

Page 16 of 141

Public Sub PageSet_WizardButtonsUpdate(sender As Object,

 e As finPageSetHandlerWizardButtonsUpdateEventArgs) Handles

Me.WizardButtonsUpdate

 If chkEnableNext.Value Then

 ' Normal behavior, i.e., enable Next from the first page

 Else

 ' Act like a single-page wizard, i.e., disable Next and enable Finish from the first page

 e.NextEnabled = False

 e.FinishEnabled = True

 End If

 ' Other buttons

 e.PrintEnabled = chkEnablePrint.Value

End Sub

WizardValidate

This event allows the Script to validate the contents of the current page and prevent the user

from moving to the next page if necessary.

Inserting an event handler will create a sample event handler Script method which contains a

Select Case block for each page in the Page Set.

NOTE: This event is only called when moving forward through the wizard and is only called if

all Page Objects on the page are in a valid state, e.g., any mandatory Page Objects have a

value entered.

The following example shows how to prevent the User from moving to the next page and also

to prompt the User before moving to the next page:

Public Sub PageSet_WizardValidate(sender As Object,

 e As finPageSetHandlerWizardValidateEventArgs) Handles

Me.WizardValidate

 Select Case e.PageId

 Case "ClientType"

 If MsgBox("Are you sure you have selected the correct Client Type?", MsgBoxStyle.Question Or

MsgBoxStyle.YesNo) = MsgBoxResult.No Then

 e.Failed = True

 End If

 Case "Individual"

 If Len(txtFirstName.Text) = 0 AndAlso Len(txtLastName.Text) = 0 Then

 e.Failed = True

 mUI.MsgBox("You must enter either the First or Last Name.", MsgBoxStyle.Exclamation)

 txtFirstName.Focus()

 End If

 Case "Company"

 End Select

End Sub

CommandButtonClick

This event is called when the Finish button is clicked (or the Save and Print buttons if the

Page Set is configured to show these) and allows the Page Set Script to perform whatever

action is required.

Inserting an event handler will create a sample event handler which contains a Select Case

block for each command button.

By default, the Page Set will automatically be closed upon clicking the Finish button. This can

be prevent by setting e.Cancel = True.

Page 17 of 141

The following example simply displays a message upon clicking the Finish button and then

closes the Page Set form. It also prompts to User to close the form if they click the Window

Close button:

Public Sub PageSet_CommandButtonClick(sender As Object,

 e As finPageSetHandlerCommandButtonClickEventArgs) Handles

Me.CommandButtonClick

 Select Case e.CommandButton

 Case isefinPageSetCommandButton.Finish

 If MsgBox("Finish and close this Page Set?", MsgBoxStyle.Question Or MsgBoxStyle.YesNo) =

MsgBoxResult.Yes Then

 ' Perform Finish ations

 Else

 e.Cancel = True

 End If

 Case isefinPageSetCommandButton.WindowClose

 If MsgBox("Close this Page Set?", MsgBoxStyle.Question Or MsgBoxStyle.YesNo) =

MsgBoxResult.No Then

 e.Cancel = True

 End If

 End Select

End Sub

NOTE: This event will not fire when clicking the Next > or Finish buttons if the

WizardValidate event indicates that the Page is not valid or if one or more visible Page Objects

are not in a valid state.

Page 18 of 141

Tabbed Pages
Tabbed Pages should be used where data entry can be completed in any order or if you need

to present multiple pages of information to the User.

By default, Tabbed Pages display OK and Cancel buttons but this can be customised on the

Options page of the Page Set. If neither button is displayed, the Page Set can still be closed by

clicking the Window Close button.

Tabbed Pages work as follows:

• The Page Set Script's Initialise method can decide what pages to display.

• When the OK or Cancel buttons are clicked, the CommandButtonClick event is called.

Initialise

This method can be used to hide certain pages as per the following example:

Private mClient As finClient

Public Overrides Function Initialise() As Boolean

 ' Assume Success

 Initialise = True

 ' Initialise

 mReports = DirectCast(psh.Reports, ISfinReports)

 mUI = DirectCast(psh.UserInterface, ISUserInterfaceBL)

 ' Load Client

 mClient = finBL.CreateClient()

 If mClient.Load("C10000") Then

 psh.Pages("Individual").Visible = mClient.IsIndividual

 psh.Pages("Company").Visible = mClient.IsOrganisation

 Else

 Initialise = False

 End If

End Function

Command Buttons

Command Buttons appear at the button of the Page Set form and, which buttons are displayed

is configured on the Page Set form, Options page.

The Page Set Handler (psh) has a CommandButtons collection that can be used to update the

states of these buttons.

This collection contains an entry for each type of Command Button, regardless of whether the

button is applicable (E.g., it will always contain an isefinPageObjectCommandButton.Finish

entry, even for non-wizard Page Sets). Updating a Command Button that is not applicable to a

particular type of Page Set form will have no effect.

Command Buttons have the following properties which can be set by the Page Set Script:

• Caption

o The button caption.

o Command Buttons are fixed at 80 pixels wide so short captions should be used.

• Enabled

o Allows the Command Button to be enabled or disabled.

• Visible

o Allows the Command Button to be hidden.

The following example updates Command Button states:

With psh.CommandButtons(isefinPageSetCommandButton.Cancel)

 .Enabled = Not .Enabled

Page 19 of 141

 .Caption = "Cancel Edit"

End With

With psh.CommandButtons(isefinPageSetCommandButton.Print)

 .Visible = Not .Visible

End With

NOTE: Typically, wizard type Page Sets would not access the CommandButtons collection, they

use the WizardButtonsUpdate event to update command button states.

CommandButtonClick

This event is called when the OK or Cancel buttons are clicked (or the Save and Print buttons

if the Page Set is configured to show these) and allows the Page Set Script to perform

whatever action is required.

Inserting an event handler will create a sample event handler which contains a Select Case

block for each command button.

By default, the Page Set will automatically be closed upon clicking the OK, Finish and Cancel

buttons. This can be prevented by setting e.Cancel = True.

The following example displays a message upon clicking the Finish button and then closes the

Page Set form. It also prompts to User to close the form if they click the Window Close button:

Public Sub PageSet_CommandButtonClick(sender As Object,

 e As finPageSetHandlerCommandButtonClickEventArgs) Handles

Me.CommandButtonClick

 Select Case e.CommandButton

 Case isefinPageSetCommandButton.Ok

 If MsgBox("Finish and close this Page Set?", MsgBoxStyle.Question Or MsgBoxStyle.YesNo) =

MsgBoxResult.Yes Then

 ' Perform OK ations

 Else

 e.Cancel = True

 End If

 Case isefinPageSetCommandButton.Cancel, isefinPageSetCommandButton.WindowClose

 If MsgBox("Close this Page Set?", MsgBoxStyle.Question Or MsgBoxStyle.YesNo) =

MsgBoxResult.No Then

 e.Cancel = True

 End If

 End Select

End Sub

NOTE: This event will not fire when clicking the OK button if one or more visible Page Objects

are not in a valid state, e.g., a mandatory Page Object does not have a value entered.

CurrentPageChanged

This event allows the Script to perform some action when the current page changes, e.g., to

load information to be displayed on the page on-demand or to update Page Objects based on

information entered on an earlier page.

Inserting an event handler will create a sample event handler Script method which contains a

Select Case block for each page in the Page Set.

NOTE: The first time this event is called (when the form first loads), both the e.PageId and

e.PreviousPageId properties will point to the same page.

Page 20 of 141

Single Page
Single Pages should be used where only one page of information is to be captured or displayed

to the User. They work in exactly the same way as Tabbed Pages type Page Sets.

A Single Page type Page Set can contain multiple pages but it is up to the Page Set Script itself

to switch pages (by setting the Page Set Handler's CurrentPageId property), e.g., when a

button is clicked as per the following example:

Public Sub cmdShowMore_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdShowMore.Click

 psh.CurrentPageId = "Individual"

End Sub

Page 21 of 141

Inline Tabs
Page Sets configured to use 'Inline Tabs' differ from other Page Sets in that they are not

intended to be displayed using their own, standalone, form but rather to reside within another

form.

Inline Tabs work as follows:

• The Page Set Script's Initialise method can decide what pages to display.

• Since there are no command buttons for 'Inline Tabs', Page Set specific events are limited

to the following:

o PageSetActivate

 This occurs every time the Page Set is activated, e.g., from the Task Manager, this

occurs every time the User switches to the corresponding Task Manager folder.

o PageResize

Inline Tabs are supported in the following places:

• Task Manager

o Task Manager folders can be defined as 'Page Set' type folders.

o When the folder is selected, the Page Set will be displayed, allowing the User to interact

within it.

o This is ideal for functionality such as interactive dashboards or reports.

 Prior to being able to use Page Sets, 'HTML Report' type folders were the only way to

provide an interactive environment from the Task Manager.

Page 22 of 141

Pages
A Page Set can contain one or more Pages.

Pages are maintained via the 'Pages' page of the Page Sets form. This shows a list of pages

from which Pages can be added, edited, deleted and re-ordered.

Adding a new Page or drilling down to an existing Page displays the Page Wizard.

Page Wizard
This wizard has two pages as described below.

Page

• Each Page must be given a unique code up to 25 characters long. This allows the Page to be

identified in the Page Set's Script.

• The Title and Summary of a Page will be displayed in the Form Heading when running the

Page Set providing that the Page Set is configured (via the Options page) to display a Form

Heading.

o For 'Tabbed Pages' type Page Sets, the Title is also the caption that is displayed on the

Tab representing the Page.

• Layout Mode determines whether the Page's content (Page Objects) are positioned

automatically (Flow) or manually (Positioned).

o These are described in the Page Layout Modes section.

• If a Page's Active flag is unchecked, the Page will not be included in the Page Set and any

attempt to reference it via the Page Set Script will result in an error.

Page Designer

The Page Designer page is where the Page's layout is created.

The Page Designer consists of two tabs:

• Designer

o This shows a preview of the page and allows Page Objects to be added, updated, deleted

and moved.

• Page Objects

o A grid of Page Objects. This is useful for re-ordering Page Objects or locating Page

Objects that, for some reason, cannot be seen on the Designer tab.

o Page Objects can be added, updated, deleted and moved using the buttons below the

grid.

The Page Designer is covered in the next section.

Page 23 of 141

Page Designer
The following screenshot shows the Page Designer which is accessed from the Page wizard:

The Page Designer consists of the following:

• Two tabs; Designer and Page Objects.

o The Page Objects tab shows a grid of Page Objects. This is useful for re-ordering Page

Objects or locating Page Objects that, for some reason, cannot be seen on the Designer

tab.

• A toolbar at the top.

• A 'canvas' (the green area).

o This shows how the Page will look and Page Objects can be selected and moved about.

• A properties grid to the right of the canvas.

o This allows common properties to be changed for the selected Page Object.

o If multiple Page Objects are selected, this only allows the properties common to each of

the selected Page Objects to be changed.

• A toolbar below the canvas.

o This allows simple actions based on the selected Page Objects such as duplicating and

copying and pasting.

Page 24 of 141

Toolbar
The buttons available on the Page Designer toolbar depend on whether the Page is in 'Flow' or

'Positioned' layout mode.

The table below describes each button.

 Undo Undo last change.

 Redo Redo last undone change.

Label

Insert a Label.

You may also drag the button to canvas.

 TextBox
Insert a TextBox.

You may also drag the button to canvas.

 ComboBox
Insert a ComboBox.

You may also drag the button to canvas.

 DBComboBox
Insert a DBComboBox.

You may also drag the button to canvas.

 NumberBox
Insert a NumberBox.

You may also drag the button to canvas.

 DateBox
Insert a DateBox.

You may also drag the button to canvas.

Date Cycle

ComboBox

Insert a Date Cycle ComboBox.

You may also drag the button to canvas.

 CheckBox
Insert a CheckBox.

You may also drag the button to canvas.

 Button
Insert a Button.

You may also drag the button to canvas.

 HTML Panel
Insert an HTML Panel.

You may also drag the button to canvas.

 Grid

Insert a Grid.

You may also drag the button to canvas.

 Image
Insert an Image.

You may also drag the button to canvas.

Decrease Label

Font Size
Decrease the size of the selected Label(s) font.

Increase Label

Font Size
Increase the size of the selected Label(s) font.

 Decrease Indent
Decrease the selected Page Objects' indent by 8.

Flow layout mode only.

 Increase Indent Increase the selected Page Objects' indent by 8.

Page 25 of 141

Flow layout mode only.

Decrease Top

Padding

Decrease the selected Page Objects' top padding by 4.

Flow layout mode only.

Increase Top

Padding

Increase the selected Page Objects' top padding by 4.

Flow layout mode only.

Decrease

Bottom Padding

Decrease the selected Page Objects' bottom padding by 4.

Flow layout mode only.

Increase Bottom

Padding

Increate the selected Page Objects' bottom padding by 4.

Flow layout mode only.

 Tab Order Mode Enter/ Exit Tab Order mode.

Positioned

Layout

Change this Page's layout mode to 'Positioned' but retain the

current layout.

Flow layout mode only.

Page 26 of 141

Canvas
The canvas is where Page Objects are positioned and shows a preview of how the Page will

look.

• In 'Flow' layout mode, the Ctrl+Up and Ctrl+Down keys will move the selected Page

Object(s) up or down.

o The toolbar buttons beneath the canvas can also be used to move Page Objects up and

down.

• Multiple Page Objects can be selected by:

o Clicking on the canvas background and dragging the selection rectangle.

o Holding down the Ctrl key when clicking a Page Object.

 This will deselect a Page Object if it is already selected.

o Selecting the Page Object rows in the grid on the Page Objects tab and then switching

back to the Designer tab.

• Pressing the Delete key will delete all selected Page Objects.

• Double-clicking a Page Object or right-clicking and selecting 'Properties…' displays the Page

Object wizard allowing any of the Page Object's properties to be changed.

The toolbar beneath the canvas has the following buttons:

 Duplicate Duplicate the active Page Object.

Move Up

Moved selected Page Objects up.

Flow layout mode only.

 Move Down
Moved selected Page Objects down.

Flow layout mode only.

 Cut

Cut the selected Page Objects to the clipboard.

NOTE: Page Objects can be copied between Pages and Page

Sets.

 Copy

Copy the selected Page Objects to the clipboard.

NOTE: Page Objects can be copied between Pages and Page

Sets.

 Paste Paste Page Objects from the clipboard.

Right-clicking a Page Object will provide the following actions in addition to the standard Cut/

Copy/ Paste actions:

Properties

Show the Page Object wizard.

Copy assignments To

Copy a code snippet to the clipboard to assign a value to a Page Object (or multiple

Page Objects if more than one is selected), e.g., txtTextBox1.Text = ""

Copy assignments From

Copy a code snippet to the clipboard to get a value from Page Object (or multiple Page

Objects if more than one is selected), e.g., value = txtTextBox1.Text

Page 27 of 141

 Delete the selected Page Objects.

Page 28 of 141

Tab Order Mode
By default, all Page Objects have a Tab Index of 0 meaning that, when the User presses the

tab key (or Enter key if configured under User Preferences) to move to the next Page Object,

the focus will be moved according to the Page Object's order in the Page Objects grid of the

Page Designer.

When the Tab Order mode button () is clicked, the Page Designer enters Tab Order mode.

When in this mode, you can click each Page Object in the order you want them to be focused.

A number is shown in the top-left of the Page Object denoting the order in which they have

been clicked, e.g.:

Tab Order can be accepted by pressing Enter or by clicking the Tab Order mode button. It can

be cancelled by pressing the Escape key.

Page 29 of 141

Page Layout Modes
It is recommended that all Pages use 'Flow' layout mode unless there is a good reason not to

since flow layout has many advantages as described in the next sections.

Flow
Flow layout mode causes all of a Page's Page Objects to be laid out automatically based on a

few simple rules.

This has the following advantages:

• If you hide a Page Object by setting PageObject.Visible = False, any Page Objects

below it will automatically adjust their positions to fill in the gap where the now invisible

Page Object was previously displayed.

• Caption widths can automatically be calculated, e.g., you may add several Page Objects to a

Page with differing captions, e.g., First Name, Last Name, Age. By automatically sizing the

caption width, you do not have to worry about resizing the Page Objects if you decide to

change one of the captions (E.g., changing 'Age' to 'Client's Age').

• A Page Object, e.g., a Grid, can be configured to span the entire Page width so that if the

Page is resized, the Grid will grow or shrink to fit.

• A Page Object, e.g., a Grid, can be configured to span the entire Page height so that if the

Page is resized, the Grid will grow or shrink to fit the page.

o If multiple Page Objects are configured for their height to 'Size to fill empty space on

page', the remaining white-space at the bottom of the Page will be apportioned equally

between these Page Objects.

• Buttons and Labels can size themselves to fit the specified caption, even if the caption is

changed from the Page Set Script.

Page 30 of 141

Flow Layout Properties

When viewing a Page Object's properties for a Page that is in 'Flow' layout mode, certain flow-

related properties are available:

• Width

The width of the Page Object in pixels. This is actually the width you would like the Layout

Rectangle to be (the Layout Rectangle is explained in the next section).

o Auto-Size?

Auto-sizing the width may have a different effect based on the Page Object type. The red

caption to the right explains what it does.

In this case, it extends the width of the Page Object to include the auto-calculated (in

this case) Caption Width. Therefore, if the Caption Width is calculated to be 60 pixels, the

actual width of the Page Object's Layout Rectangle will be 260.

• Height

Many Page Objects have a fixed height of 20. In this case, this is a TextBox which, if Multi-

Line is checked can vary its height.

o Multi-Line?

Checking this allows a TextBox type Page Object's height to be specified.

o Size to fill empty space on Page?

Checking this will cause a TextBox, Grid, HTML Panel or Image type Page Object to

expand its height to fill any empty space on the Page. As the Page is resized, the height

will be recalculated.

If a height is specified, this will be taken as being the minimum height for the Page

Object.

If more than one Page Object has this checked, the Page's empty space will be

apportioned equally to each Page Object.

• Caption Width

The width of the caption portion of the Page Object in pixels.

Not all Page Objects have a caption, e.g., Grids and Images.

o Auto-Size Caption Width?

Checking this will calculate the Caption Width automatically. This is calculated to be the

width of the widest caption for all Page Objects on the Page.

Where multiple columns are used on the Page, this will be the width of widest caption in

this Page Object's column.

If the Page Object is being kept on the same line as another Page Object, the Caption

Width will be calculated based on this Page Object's caption only.

• Padding Left, Top, Right and Bottom

Each Page Object has a Layout Rectangle. The padding settings allow the Page Object to be

aligned within this rectangle.

Page 31 of 141

• Keep on the same line as the previous Page Object?

Sometimes it is desirable to have Page Objects appear on the same line on the page, e.g.,

you may wish to keep several buttons on the same line or maybe the First Name and Last

Name of a Client.

• Left Align With

It is possible to left-align a Page Object with another Page Object on the page. This allows

you to specify the Name of the Page Object to left-align this Page Object with.

Page 32 of 141

The Layout Rectangle

Page Objects are laid out based upon a layout rectangle. This is simply a rectangle in which the

Page Object is positioned but with padding applied to the left, top, right and bottom, e.g.:

Each of the 3 Page Objects in the above screenshot exists within their own rectangle which is

aligned to the left of the Page.

However, both the 'First Name' and 'Last Name' Page Objects have a left padding of 8 and a

bottom padding of 4 to space them out.

Note that by default, Page Objects are positioned vertically, one under the other.

Page 33 of 141

Positioning Page Objects on the Same Line

Checking the 'Keep on the same line as the previous Page Object?' checkbox in a Page Object's

properties (show as 'Keep With Previous' in the property grid) has the following affect:

Page 34 of 141

Aligning with an existing Page Object

It is also possible, using the 'Left Align With' property, to align a Page Object with another

Page Object that appears before it on the page, e.g.:

In the above example:

• Each of the 'Description' and 'Price' Page Objects are configured to 'Keep With Previous'.

• The 'Total' NumberBox has been configured to left align with one of the 'Price'

NumberBoxes, i.e.:

Page 35 of 141

Auto-Sizing Width

How auto-sizing of a Page Object's width works depends on the type of Page Object. This is

detailed more in the Page Objects section but a few examples are:

• Labels will auto-size their width and their height to accommodate their content, e.g.:

• For TextBoxes, auto-sizing the width will expand the width of the Page Object to extend to

the right-hand side of the Page if the 'Max Length' is unspecified. Otherwise, it will size

automatically based on the 'Max Length', accounting for the Caption width, e.g.:

• Grids, HTML Panels and Images will expand their width to extend to the right-hand side of

the page but, if a Width is specified, this will be the maximum width they expand to, e.g.:

Page 36 of 141

Auto-Sizing Height to Fill Page

Grids, HTML Panels, Images and multi-line TextBoxes can all be configured to expand their

height to fill the page via the 'Size to fill empty space on Page?', e.g.:

If more than one Page Object is set to auto-size height, the empty space on the page will be

apportioned equally between the Page Objects, e.g.:

NOTE: If the height of any of the Page Objects is specified, i.e., it is not zero, this will be

taken as being the minimum height for the Page Object and it will never be sized smaller than

this.

Page 37 of 141

Positioned
Positioned layout mode allows the location and size of all Page Objects to be specified. This

allows for the creation of layouts that would not be possible using Flow layout.

Page's that use Positioned layout can utilise the PageResize event to resize or reposition Page

Objects.

PageResize Event

This event is called when a Page is first displayed and also when the Page Set form is resized

and should generally only be used for Pages using 'Positioned' layout since the Left and Top

properties of a Page Object on a 'Flow' layout page are meaningless, e.g.:

Public Sub PageSet_PageResize(sender As Object,

 e As finPageSetHandlerPageResizeEventArgs) Handles Me.PageResize

 Select Case e.PageId

 Case "POSITIONED"

 imgTest.PageObject.Left = CInt((e.PageWidth - imgTest.PageObject.Width) / 2)

 End Select

End Sub

NOTE: The reason why the Left property must be accessed from the .PageObject property

rather than directly from imgTest is that we have tried to simplify the number of properties

available from the main Page Objects (E.g., imgTest) and, since the default layout mode for a

Page is 'Flow', you would typically not need to access the Left property.

Page 38 of 141

Page Objects
This section details each of the various Page Object types. The main focus will be the Page

Object's use and properties for Pages using 'Flow' layout mode.

Various Page Set samples are available which give more practical examples. These are detailed

in the Introduction section.

General

Tooltip

Most Page Objects support a Tooltip that is displayed when hovering over the Page Object.

This is typically defined on the Page Object wizard but it can also be updated via Script Code,

e.g.:

txtFirstName.TooltipText = "Enter the Client's First Name"

Field Hint

The following types of Page Object support a Hint that is displayed when the Page Object has

no content.

This is useful when displaying multiple Page Objects on a single line with only one caption,

e.g.:

You would typically define the Hint on the Page Object wizard but it can also be updated via

Script Code, e.g.:

txtFirstName.FieldHint = "First Name"

Group Tags

A Page Object can define a comma-separated list of Group Tags.

These are useful for performing bulk operations on Page Objects, e.g.:

• You define a set of Page Object relating to a co-borrower in an Account Application Page

Set.

• You only want these Page Objects to be visible when the User checks the 'Has Co-Borrower'

CheckBox so you assign them all a Group Tags property of 'CoBorrower'.

The following code would achieve the above:

Public Sub chkCoBorrower_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkCoBorrower.Change

 psh.GroupTagSetVisible("CoBorrower", chkCoBorrower.Value)

End Sub

More information on using Group Tags can be found under Advanced Scripting, Group Tags.

Page 39 of 141

Buttons

Many types of Page Objects can define buttons to display. For most types these will be

displayed after the text entry portion of the Page Object but for Grids, buttons will be

displayed underneath the Grid.

Up to three buttons can be specified in the Page Object wizard, e.g.:

More buttons can be added via Script code (typically in the Initialise method). This includes

'Separators' which appear as a vertical line to break up blocks of buttons, e.g.:

With txtTextBox1.Buttons

 .Add(isefinPageObjectButtonType.Refresh)

 .Add(isefinPageObjectButtonType.Search)

 .AddSeparator()

 .Add(isefinPageObjectButtonType.Custom, "Copy", "Clipboard_Copy", "Copy to clipboard")

End With

Each button has Enabled and Visible properties allowing their state to be updated, e.g.:

txtTextBox1.Buttons.ItemById("Copy").Enabled = False

The Page Object's ButtonClick event allows the Page Set Script to respond to a button being

clicked, e.g.:

Public Sub txtTextBox1_ButtonClick(sender As Object, e As finPageObjectButtonClickEventArgs)

Handles txtTextBox1.ButtonClick

 Select Case e.ButtonType

 Case isefinPageObjectButtonType.Refresh

 ' Do something

 Case isefinPageObjectButtonType.Custom

 Select Case e.ButtonId

 Case "Copy"

 ' Do something

 End Select

 End Select

End Sub

NOTE: Non-custom buttons have a ButtonId based on their type, e.g., the above could simply

have added a Case "Refresh" to handle the Refresh button.

Custom buttons can be assigned a shortcut key (typically for buttons that appear after Page

Objects such as DBComboBoxes), e.g.:

With cboClient.Buttons

 .Add(isefinPageObjectButtonType.Custom, "Load", "Browse_Open",,,,

isefinPageSetShortcutKey.Enter)

 .Add(isefinPageObjectButtonType.Custom, "Search", "Search",,,, isefinPageSetShortcutKey.F6 Or

isefinPageSetShortcutKey.Control)

End With

NOTE: The shortcut key is only applicable to Page Objects that can receive input focus, e.g.,

DBComboBox and not those that can't such as Button Strip.

Non-custom buttons have a built-in Icon, Tooltip and Shortcut key assigned. Custom buttons

need to specify their own Icon which should be the resource Id of a finPOWER Connect icon.

The General page of the Page Sets form has an Icon dropdown list that contains all finPOWER

Connect icons. The table below lists some of the more common icons used for buttons:

Page 40 of 141

 Select_All Select_None Select_Up Select_Down

 Select_Checked Select_Unchecked Select_Invert Select_Same

 Checkbox_Checked Checkbox_Unchecked

 Clipboard_Copy Clipboard_Cut Clipboard_Paste

 Browse_Open Form_Open Plus

 Search Find

NOTE: finPOWER Connect icons may appear slightly different on high DPI displays.

Page 41 of 141

Label
Labels are used for headings, information text, hyperlinks etc. The only event supported by

labels is the Click event.

Label Styles

Labels have the following pre-defined styles:

• Heading 1

• Heading 2

• Heading 3

• Heading 4

o This matches the section headings used on built-in finPOWER Connect forms.

• Normal

• Hyperlink

o Recommended for any labels that are clickable (i.e., handle the Click event) since they

are styled like a hyperlink and change the mouse pointer to a hand.

• Warning

• Information

Custom Labels

Custom labels should be used sparingly since they do not conform to any of the built-in

finPOWER Connect styles.

Custom labels allow their font and background and foreground colours to be specified;

updating these properties from a Page Set Script for non-custom labels with have no effect.

The 'Font Name' should be restricted to a font that you are sure will exist on all Users' PCs. If

this font does not exist, the default finPOWER Connect font will be used.

Events

The following events are available for Labels:

• Click

o The User has clicked the label.

Page 42 of 141

TextBox
TextBoxes should be used for entry of non-numeric, non-date information. The maximum

number of characters (Max Length) can be specified.

A TextBox can be configured to be multi-line in which case its height can be specified. It is

recommended that this is a multiple of 16.

ContextMenuListObjectType

When right-clicking in a TextBox in certain places within finPOWER Connect, a list of related

records will be shown, e.g., right-clicking the Clients range in the Client List report parameters

form will show a list of Clients appearing on other open forms, e.g.:

This is achieved by setting the ContextMenuListObjectType to one of the following:

• Account

• AccountApp

• Client

• SecurityStmt

• Workflow

Format

A TextBox can also be given one of the following formats:

• Upper Case

o The text entered will be converted to upper case.

• Lower Case

o The text entered will be converted to lower case.

• Proper Case

o The text entered will be converted to proper case, i.e., the first letter of each word will be

capitalised.

o NOTE: Do not use this for name fields since it will not handle exceptions such as

'MacDonald' or 'O'Brien'.

• Phone Number

o The text entered will be formatted according to phone number formatting rules.

Events

The following events are available for TextBoxes:

• Change

o The text has been changed by the User.

o Occurs every time the text is updated.

o Setting e.ChangeHandled = True will update the TextBox's TextOriginal property to

match the current text.

Page 43 of 141

 The TextOriginal is the value of the text when the TextBox was first focused.

 NOTE: It is recommended that you always set e.ChangeHandled to True unless using

the Enter and Leave events.

• NOTE: The Change event is not fired when the Text property is updated in code. If

required, you need to specifically handle this after setting the property.

• ButtonClick

o See Buttons.

• Enter

o The Page Object has gained input focus.

o The Page Object's TextOriginal property is set to its current Text value.

• Leave

o The Page Object has lost input focus.

o The Page Object's TextOriginal property can be compared against its current Text

value to see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 44 of 141

ComboBox
ComboBoxes are used to show a dropdown list of values. The maximum number of characters

(Max Length) can be specified and the value entered into the ComboBox can be limited to the

list of dropdown values (Limit to List).

List

The ComboBox's List can be one of the following:

• Information List

o An Information List.

o NOTE: If the Information list has a Value and an Alt Value, use a DBComboBox.

• SQL Database Query

o A database query.

• Comma Separated list of items

o A comma-separated list.

o If one of the list values contains a comma, it should have quotes around it, e.g.:
Item 1,"Item 2, Second",Item 3

The list can be updated by the Page Set Script, e.g.:

' CSV

cboComboBox1.List = "One,Two,Three"

' Information List

cboComboBox1.List = "LIST.Countries"

' Database Query

cboComboBox1.List = "SQL.Select [AccountId] From [Account]"

Events

The following events are available for ComboBoxes:

• Change

o The text has been changed by the User.

o Occurs every time the text is updated.

 If it was updated via selecting an item in the list, e.ChangedFromPopup will be True.

o Setting e.ChangeHandled = True will update the ComboBox's TextOriginal property to

match the current text.

 The TextOriginal is the value of the text when the ComboBox was first focused.

 NOTE: It is recommended that you always set e.ChangeHandled to True unless using

the Enter and Leave events.

NOTE: The Change event is not fired when the Text property is updated in code. If required,

you need to specifically handle this after setting the property.

• ButtonClick

o See Buttons.

• Enter

o The Page Object has gained input focus.

o The Page Object's TextOriginal property is set to its current Text value.

• Leave

Page 45 of 141

o The Page Object has lost input focus.

o The Page Object's TextOriginal property can be compared against its current Text

value to see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 46 of 141

DBComboBox
DBComboBoxes (Database ComboBoxes) are used to show a dropdown list of values (E.g., a

record Id) and also a description to the right of the text portion.

The maximum number of characters (Max Length) can be specified, as can the width of the

text portion (TextBox Width) of the Page Object.

Typically, a DBComboBox will have an auto-sized Width that extends to the right of the page.

This accommodates the description to the right of the text portion.

ContextMenuListObjectType

When right-clicking in a DBComboBox in certain places within finPOWER Connect, a list of

related records will be shown, e.g., right-clicking the Client field in the Credit Enquiry wizard

will show a list of Clients appearing on other open forms, e.g.:

This is achieved by setting the ContextMenuListObjectType to one of the following:

• Account

• AccountApp

• Client

• SecurityStmt

• Workflow

Data Source

The DBComboBox's List (Data Source Type) can be one of the following:

• None

o The Page Set Script will handle populating the List.

• Standard Range

o A built-in finPOWER Connect Standard Range.

 Many Standard Ranges are based on global collections such as Branches. Others such

as Accounts and Clients are retrieved directly from the database.

o A checkbox to only include Active records.

o The ability to use 'Fast Mode' is given for certain ranges, e.g., Accounts, Clients and

Security Statements. This means that the DBComboBox will not display a dropdown

button and does not have the overhead or reading a potentially large amount of

information from the database.

o 'Show Find and/ or Search Buttons' allows buttons to be automatically added based on

the type of range specified.

• Database Query

o If a database query is used, an 'Id Field' (the value that appears in the DBComboBox)

and, optionally, a 'Desc Field' (Description Field), the description that appears to the right

of the text portion should be specified.

• DataView

o Conceptually the same as 'None' but this just makes it clear that the Script will populate

the list from a DataView.

Page 47 of 141

The data source can be updated by the Page Set Script, e.g.:

Dim dv As DataView

' Bind to an Information List using special list functionality

If finBL.ResolveListAsDataView("LIST.BankShortNames", dv) Then

 cboComboBox1.RefreshDataView(dv, "Value", "ValueAlt")

End If

' Bind to an Information List using method on finInformationListRO object

' NOTE: This method allows us to control the column names, i.e., change them from Value and

ValueAlt

If finBL.InformationLists("BankShortNames").GetDataView(dv, "Bank", "Description", False) Then

 cboComboBox1.RefreshDataView(dv, "Bank", "Description")

End If

' Bind to a list of Promotions for an Account Type (could also use the

GetAvailablePromotionsDataView method)

If finBL.AccountTypes("VL").Promotions.GetDataView(dv, "") Then

 cboComboBox1.RefreshDataView(dv, "PromotionId", "Description",

"PromotionId,Description,IsAvailable")

End If

' Bind to a Standard Range but override the columns to display

' NOTE: The column names match the properties on the business layer, e.g., finScriptRO properties

cboComboBox1.RefreshStandardRange(isefinStandardRange.Scripts, "", "", False,

"ScriptId,Description,ScriptTypeText")

Events

The following events are available for DBComboBoxes:

• Change

o Occurs every time the text is updated.

 If it was updated via selecting an item in the list, e.ChangedFromPopup will be True.

o Setting e.ChangeHandled = True will update the DBComboBoxes's TextOriginal

property to match the current text.

 The TextOriginal is the value of the text when the DBComboBox was first focused.

 NOTE: It is recommended that you always set e.ChangeHandled to True unless using

the Enter and Leave events.

• NOTE: The Change event is not fired when the Text property is updated in code. If

required, you need to specifically handle this after setting the property.

• ButtonClick

o See Buttons.

• Enter

o The Page Object has gained input focus.

o The Page Object's TextOriginal property is set to its current Text value.

• Leave

o The Page Object has lost input focus.

o The Page Object's TextOriginal property can be compared against its current Text

value to see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 48 of 141

NumberBox
NumberBoxes should be used for entry of numeric information such as currency values.

NumberBoxes can specify Minimum and Maximum values and auto-sizing a NumberBox will

size the Page Object to account for these together with the number of decimal places

(Decimals) and other settings.

Special Types

A NumberBox can also be one of the following Special Types:

• Currency

o This will use the number of decimal places based on the database's country settings.

• Percentage

o This will display a '%' symbol on the end of the number when the Page Object does not

have input focus.

Other Properties

A NumberBox also has the following properties that determine how it acts:

• NumberBoxAllowBlank

o This can be used to indicate that the NumberBox allows a blank value to be stored.

o Internally, the value is stored as Double.NaN but the NumberBox's blank state can be

set/ read from a Script using the ValueIsBlank property.

o NOTE: A NumberBox's value is never blank unless specifically set from a Script.

• NumberBoxBlankIfZero

o Indicates whether to show blank in the NumberBox if its value is zero and it does not

have input focus.

o Useful for storing values such as 'Year' where zero is used to indicate that no value has

been specified.

Events

The following events are available for NumberBoxes:

• Change

o Occurs every time the value is changed by either:

 The spin buttons.

 The User changing the value and the Page Object losing input focus.

• NOTE: The Change event is not fired when the Value property is updated in code. If

required, you need to specifically handle this after setting the property.

• ButtonClick

o See Buttons.

• Enter

o The Page Object has gained input focus.

o The Page Object's ValueOriginal property is set to its current Value.

• Leave

o The Page Object has lost input focus.

o The Page Object's ValueOriginal property can be compared against its current Value to

see if the content has changed.

Page 49 of 141

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 50 of 141

DateBox
DateBoxes are used for entry of date values.

A Minimum and Maximum value can be specified for the DateBox but generally this will be

done via Script code rather than from the Page Object wizard since it is likely to be relative to

the current date (E.g., a maximum value which is 30 days in the future).

Special Types

A DateBox can also be one of the following Special Types:

• First Day

o The date entered must be the first day of a month.

• Last Date

o The date entered must be the last day of a month.

• Historic

o The date being accepted is in the past (this is not enforced), e.g., a Date of Birth.

o If the date is entered with a 2-digit year, this will be assumed to be in the past, e.g., a

year of '89' will be converted to '1989'.

Events

The following events are available for DateBoxes:

• Change

o Occurs every time the value is changed by either:

 The spin buttons.

 The dropdown calendar.

 The User changing the value and the Page Object losing input focus.

• NOTE: The Change event is not fired when the Value property is updated in code. If

required, you need to specifically handle this after setting the property.

• ButtonClick

o See Buttons.

• Enter

o The Page Object has gained input focus.

o The Page Object's ValueOriginal property is set to its current Value.

• Leave

o The Page Object has lost input focus.

o The Page Object's ValueOriginal property can be compared against its current Value to

see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 51 of 141

Date Cycle ComboBox
Date Cycle ComboBoxes are used for entry of terms and frequencies, e.g., '12 Years' or

'Fortnightly'.

By default, a Date Cycle ComboBox will assume that a term is being entered, e.g., '12 years'.

Checking the 'Frequency?' checkbox will configure the Page Object to accept a frequency, e.g.,

'Fortnightly'.

Typically, a Date Cycle ComboBox will have an auto-sized Width that extends to the right of

the page. This accommodates the description to the right of the text portion.

List

A comma-separated list of terms or frequencies can be entered for the Date Cycle ComboBox

and the Page Object can restrict data-entry to this list (Limit to List).

Events

The following events are available for Date Cycle ComboBoxes:

• Change

o Occurs every time the value is changed by either:

 Selecting a value from the dropdown list.

 The User changing the value and the Page Object losing input focus.

• NOTE: The Change event is not fired when the Text property is updated in code. If

required, you need to specifically handle this after setting the property.

• Enter

o The Page Object has gained input focus.

o The Page Object's TextOriginal property is set to its current Text value.

• Leave

o The Page Object has lost input focus.

o The Page Object's TextOriginal property can be compared against its current Text

value to see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

Page 52 of 141

DateTimeZone
DateTimeZones are used for entry of date and time values and, if the finPOWER Connect

database is configured to use Time Zones, a Time Zone can also be entered.

Since this is a composite Page Object, it exposes both Value and TimeZoneId properties.

Events

The following events are available for DateTimeZones:

• Change

o Occurs every time the value is changed by either:

 The spin buttons.

 The dropdown calendar.

 The Time Zone dropdown.

 The User changing the value and the Page Object losing input focus.

o NOTE: Since this a composite Page Object (i.e., it has both a Value and TimeZoneId

property), there is no ValueOriginal or Changed properties.

• NOTE: The Change event is not fired when the Value property is updated in code. If

required, you need to specifically handle this after setting the property.

Page 53 of 141

CheckBox
CheckBoxes are used for entry of Boolean values.

Option Button Style

A CheckBox can be styled as an 'Option button', i.e., a circle rather than a square.

This is typically used for a group of CheckBoxes of which only one can be checked at one time.

The following example achieves this for three CheckBoxes:

Public Sub chkCheckBox_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkCheckBox1.Change,

chkCheckBox2.Change, chkCheckBox3.Change

 chkCheckBox1.Value = sender Is chkCheckBox1

 chkCheckBox2.Value = sender Is chkCheckBox2

 chkCheckBox3.Value = sender Is chkCheckBox3

End Sub

NOTE: The same Change event handler is used for all three CheckBoxes.

Events

The following events are available for CheckBoxes:

• Change

o Occurs every time the value is changed by the User.

• NOTE: The Change event is not fired when the Value property is updated in code. If

required, you need to specifically handle this after setting the property.

Page 54 of 141

Button
Buttons can be auto-sized based upon their caption.

Events

The following events are available for Buttons:

• Click

o Occurs when the button is clicked.

Page 55 of 141

HTML Editor
An HTML Panel is used to enter either plain text or HTML, for sending an HTML Email.

When auto-sizing an HTML Editor, you would typically set the Width to zero which sizes the

HTML Editor to fit the Page width. Specifying a non-zero Width will size the Page Object to fit

the Page width but restrict its maximum Width to the value specified.

If shown at the bottom of the Page, the 'Size to fill empty space on Page' option can be

checked to extend the Page Object to fill Page vertically.

HTML can be entered directly in the editor on the HTML tag, including pasting from a source

such as Microsoft Word (although the HTML pasted will be very verbose).

The Source tab can be used if more control over the HTML is required.

Formatting Toolbar

By default, an HTML Editor will display a formatting toolbar:

This toolbar is not configurable and can be hidden by unchecking the 'Show Formatting

Toolbar' option on the HTML Editor page of the Page Object wizard.

Hyperlinks

By default, even when the Page Object is read-only, clicking a hyperlink will do nothing.

However, version 2.03.03 introduced a new setting to 'Allow hyperlinks to be followed when

read-only'. If this is set then any HTTP or HTTPS hyperlinks in the HTML will be opened using

the default associated application (generally a Web browsers such as Internet Explorer or

Chrome).

Events

The following events are available for HTML Editors:

• Change

o The text has been changed by the User.

o Occurs only when the Page Object loses focus.

o Setting e.ChangeHandled = True will update the HTML Editor's TextOriginal property

to match the current text.

 The TextOriginal is the value of the text when the HTML Editor was first focused.

 NOTE: It is recommended that you always set e.ChangeHandled to True unless using

the Enter and Leave events.

• NOTE: The Change event is not fired when the Text property is updated in code. If

required, you need to specifically handle this after setting the property.

• Enter

o The Page Object has gained input focus.

o The Page Object's TextOriginal property is set to its current Text value.

Page 56 of 141

• Leave

o The Page Object has lost input focus.

o The Page Object's TextOriginal property can be compared against its current Text

value to see if the content has changed.

 The Changed property will return True if these values do not match (but only if

e.ChangeHandled was not set to True in the Change event).

NOTE: Behind the scenes, this Page Object uses Internet Explorer's editing capabilities.

The HTML produced is a little antiquated (upper case tags are generated) and is outside of the

control of Intersoft Systems.

Page 57 of 141

HTML Panel
An HTML Panel is used to display HTML, e.g., a Summary Page.

When auto-sizing an HTML Panel, you would typically set the Width to zero which sizes the

HTML Panel to fit the Page width. Specifying a non-zero Width will size the Page Object to fit

the Page width but restrict its maximum Width to the value specified.

HTML Panels are often shown at the bottom of the Page (E.g., under a Grid) and are required

to fill any remaining space on the Page. In this case the 'Size to fill empty space on Page'

option should be checked.

An HTML Panel can also be given a 'Disabled Caption' which will display in place of the HTML if

the Page Object is disabled.

Printing

As per any HTML page within finPOWER Connect, HTML Panel type Page Objects can be printed

by right-clicking on the page and selecting the Print option.

HTML Panels can also be printed from Script code, e.g.:

Public Sub cmdPrint_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdPrint.Click

 htmlPanel.Print()

End Sub

Hiding the Border

The border of an HTML Panel can be hidden via the Page Object wizard.

This is useful for creating 'rich' content on the Page Set that looks like it is part of the Page Set

rather than HTML.

The following example shows how to populate the content of an HTML Panel so that the HTML

blends in with the Page Set, including displaying a built-in finPOWER Connect icon at 32x32

pixels and setting the background colour to the 'Window' system colour (this changes based on

the selected finPOWER Connect theme):

Private Sub htmlPanel1_Refresh()

 Dim sb As StringBuilder

 ' Initialise

 sb = New StringBuilder()

 ' Create HTML

 ' NOTE: CSS can be used to set background to Windows system colour

 sb.AppendLine("<!DOCTYPE html>")

 sb.AppendLine("<html style='overflow:hidden'>")

 sb.AppendLine("<body style='padding:0; margin:0; background-color:{{SystemColour|Window}}>")

 sb.Append("<table border='0' cellpadding='0' cellspacing='0'>")

 sb.Append("<tr>")

 sb.Append("<td style='padding-right:8px'>")

 sb.Append("<img src='data:image/gif;base64," &

finBL.Utilities.GetIconAsPngBase64String("Account", 32, "Warning") & "' width='32' height='32'/>")

 sb.Append("</td>")

 sb.Append("<td>")

 sb.Append("<div style='font:16pt Segoe UI; font-weight:bold; color:#3399FF'>My Heading</div>")

 sb.Append("<div style='font:9pt Segoe UI'>Other text below the heading</div>")

 sb.Append("</td>")

 sb.Append("</tr>")

 sb.Append("</table>")

 sb.AppendLine("</body>")

 sb.AppendLine("</html>")

 ' Update HTML

 htmlPanel1.Text = sb.ToString()

End Sub

Page 58 of 141

Events

The following events are available for HTML Panels:

• CustomHyperlinkClick

o Occurs when a hyperlink in the HTML is clicked.

 A custom hyperlink should begin either 'custom://' or 'script://'.

 The event handler is passed an Application Shortcut from which the Script can handle

the action and also access any parameters.

 The following code sample sets an HTML Panel's text and then displays information

about the application shortcut when it is clicked:

Public Overrides Function Initialise() As Boolean

 ' Assume Success

 Initialise = True

 ' Initialise

 mReports = DirectCast(psh.Reports, ISfinReports)

 mUI = DirectCast(psh.UserInterface, ISUserInterfaceBL)

 htmlPanel1.Text = "test"

End Function

Public Sub htmlPanel1_CustomHyperlinkClick(sender As Object,

 e As

finPageObjectCustomHyperlinkClickEventArgs) Handles htmlPanel1.CustomHyperlinkClick

 mUI.MsgBox(e.ApplicationShortcut.Action & vbNewLine &

e.ApplicationShortcut.Parameters.GetString("Name"))

End Sub

Page 59 of 141

Grid
A Grid is used to display tabular information.

When auto-sizing a Grid, you would typically set the Width to zero which sizes the Grid to fit

the Page width. Specifying a non-zero Width will size the Page Object to fit the Page width but

restrict its maximum Width to the value specified.

Grids are often shown at the bottom of the Page or are required to fill any remaining space on

the Page. In this case the 'Size to fill empty space on Page' option should be checked.

Columns

Grid columns can only be defined in the Page Set Script. Typically this would be done in the

Initialise method, e.g.:

' Grids

With gridTest

 With .Columns

 .AddDrilldown("Drilldown")

 .AddIcon("Icon", "Icon")

 .AddBoolean("Selected", "Selected", 20, False)

 .AddString("AccountId", "Code", 80, True)

 .AddString("Name", "Name", 100, True)

 End With

End With

Once a column has been added, many properties such as Key and ReadOnly cannot be

changed. The following properties can however be updated:

• Visible

o Can be updated to show or hide the column dynamically.

• Caption

o Can be updated to change the column's caption.

Grids support the following column types:

• Boolean

• Currency

• Date

• DateTime

o Always read-only.

• Double

• Drilldown

o Always read-only.

o The Key should always start with the word 'Drilldown'. If it does not, it will be prefixed

with 'Drilldown_'.

• Icon

o Always read-only.

o Preferably, name any icon columns with a name ending in 'Icon', e.g., StatusIcon. This

will prevent the column from being included in any grid exports.

o Setting the grid cell's value (see Data Binding) to a valid icon resource Id will display that

icon in the cell.

 NOTE: A list of icons can be viewed from the 'Icon' dropdown on the General page of

either the Page Sets or Workflow Types forms.

 Special, dynamically coloured icons can be created to display flags, bullets and colour

blocks. These include the HTML colour in square brackets (e.g., Red or #FF0000) after

the resource Id, e.g.:

• Flag[Red]

Page 60 of 141

• Bullet[#FF0000]

• Colour[#FF0000]

 If the value contains a comma, the text after the comma will be assumed to be the

name of an overlay icon, e.g.:

• Account,Add

• Client,Search

• Integer

• Percent

o Always read-only.

• String

o Normal

o ListCsv

 Column can specify a simple CSV list and also a LimitToList parameter.

NOTE: Column alignment is automatic based on the column type.

Groupings

Grid columns can be grouped using the Grid's GroupByColumns property as shown below:

Public Overrides Function Initialise() As Boolean

 ' Standard code omitted for clarity

 ' Grids

 With gridTest

 With .Columns

 .AddString("ClientId", "Code", 80, True)

 .AddString("Name", "Name", 200, True)

 .AddString("AccountRoleId", "Role", 80, True)

 End With

 .GroupByColumns = "AccountRoleId"

 End With

End Function

NOTE: You would typically only group by a single column but GroupByColumns can accept a

comma-separated list of Column keys.

Data Binding

Grid data is displayed based on a 'Virtual Data Binding' model.

The grid performs a VirtualDataBind to a data source which can be either a DataView or

collection (DataSet and DataTable can be used but all this does is bind to the DefaultView).

The grid's InitialiseRow event is then called for each item in the collection. It is this event

that the Page Set Script must use to populate the grid cells, e.g.:

Private mAccount As finAccount

Public Overrides Function Initialise() As Boolean

 ' Standard code omitted for clarity

 ' Load Account

 mAccount = finBL.CreateAccount()

 Initialise = mAccount.Load("L10000")

 ' Grids

 With gridTest

 .ShowRowNumbering = True

Page 61 of 141

 With .Columns

 .AddDrilldown("Drilldown")

 .AddString("ClientId", "Code", 80, True)

 .AddString("Name", "Name", 200, True)

 .AddString("AccountRoleId", "Role", 80, True)

 .AddString("Notes", "Notes", 100)

 End With

 End With

 ' Bind to grid

 gridTest.VirtualDataBind(mAccount.Clients)

End Function

Public Sub gridTest_InitialiseRow(sender As Object,

 e As finPageObjectInitialiseRowEventArgs) Handles

gridTest.InitialiseRow

 If e.ListIndex >= 0 AndAlso e.ListIndex < mAccount.Clients.Count Then

 ' Update Fields

 With mAccount.Clients(e.ListIndex)

 e.Row.Cells("ClientId").Value = .ClientId

 e.Row.Cells("Name").Value = .ClientName

 e.Row.Cells("AccountRoleId").Value = .AccountRoleId

 e.Row.Cells("Notes").Value = .Notes

 End With

 End If

End Sub

The InitialiseRow event can also be used to style a row or a cell, e.g., to update the

background or foreground colours, add a tooltip or force a cell to read-only.

It can also be used to hide a row:

Public Sub gridTest_InitialiseRow(sender As Object,

 e As finPageObjectInitialiseRowEventArgs) Handles

gridTest.InitialiseRow

 If e.ListIndex >= 0 AndAlso e.ListIndex < mAccount.Clients.Count Then

 With mAccount.Clients(e.ListIndex)

 ' Update Fields

 e.Row.Cells("ClientId").Value = .ClientId

 e.Row.Cells("Name").Value = .ClientName

 e.Row.Cells("AccountRoleId").Value = .AccountRoleId

 e.Row.Cells("Notes").Value = .Notes

 ' Style

 If .IsOwner Then e.Row.ColourBackground = "yellow"

 If .RoleJoint Then e.Row.Cells("AccountRoleId").ColourForeground = "#0000ff"

 ' Hide Row

 If .Active Then e.Row.Visible = False

 ' Tooltip

 e.Row.Cells("ClientId").TooltipText = "Credit Rating: " & .Client.CreditRating

 ' Read-Only

 If .IsOwner Then

 e.Row.Cells("Notes").ReadOnly = iseDefaultableBoolean.True

 End If

 End With

 End If

End Sub

You can re-bind the data in the grid using the VirtualDataRefresh method, e.g., if the

underlying data source has changed:

gridTest.VirtualDataRefresh(-2, "", True)

VirtualDataRefresh takes the following parameters:

• newActiveRowIndex

Page 62 of 141

o The index of the row to activate or:

 -1 to not activate any rows.

 -2 to retain the existing active row index.

o NOTE: The active row is indicates by an arrow in the row selectors, e.g.:

• newActiveColumnKey

o The key of the column to select or:

 "*" to retain the current selected column.

 "" for unspecified, i.e., the first column.

• retainSelectedRows

o Specifying True will retain the selected rows, i.e., the rows with their column selector

selected:

Page 63 of 141

Updating Cell Values

The BeforeCellUpdate event is used to update the underlying data source when the User

updates a cell value.

This event is only called for non-read-only columns, e.g.:

Public Sub gridTest_BeforeCellUpdate(sender As Object,

 e As finPageObjectBeforeCellUpdateEventArgs) Handles

gridTest.BeforeCellUpdate

 If e.ListIndex >= 0 AndAlso e.ListIndex < mAccount.Clients.Count Then

 Select Case e.ColumnKey

 Case "Notes"

 mAccount.Clients(e.ListIndex).Notes = CStr(e.NewValue)

 End Select

 End If

End Sub

When updating the underlying data source, e.NewValue must be cast to the correct data type,

e.g.:

Public Sub gridData_BeforeCellUpdate(sender As Object,

 e As finPageObjectBeforeCellUpdateEventArgs) Handles

gridData.BeforeCellUpdate

 With DirectCast(mItems(e.ListIndex + 1), Item)

 Select Case e.ColumnKey

 Case "BooleanValue"

 .BooleanValue = CBool(e.NewValue)

 Case "CurrencyValue"

 .CurrencyValue = finBL.Runtime.NumberUtilities.ConvertToCurrency(e.NewValue)

 Case "DateValue"

 .DateValue = finBL.Runtime.DateUtilities.ConvertToDate(e.NewValue)

 Case "DoubleValue"

 .DoubleValue = finBL.Runtime.NumberUtilities.ConvertToDouble(e.NewValue, 4)

 Case "IntegerValue"

 .IntegerValue = finBL.Runtime.NumberUtilities.ConvertToInteger(e.NewValue)

 Case "StringValue"

 .StringValue = CStr(e.NewValue)

 End Select

 End With

End Sub

Row Selection

The grid's current (active) row can be determined and set via the grid's ActiveDataRowIndex

property. This will be -1 if there is no active row in the grid. The AfterRowActivate event is

fired whenever the active row changes.

The grid's selected rows are distinct from its active row. Rows are selected by clicking the row

selectors or by calling one of the following grid methods:

• SelectedRowsClear()

o Clear row selection.

• SelectRow(index, selected)

o Select or unselect the row with the specified index.

• SelectAllRows()

o Select all rows.

• SelectRowsUp()

o Select all rows above and including the active row.

• SelectRowsDown()

o Select all rows below and including the active row.

Page 64 of 141

A grid's active row is indicated by a right-facing arrow:

Whereas, selected rows have their row selectors (the left-most column) highlighted:

The grid's GetSelectedRows() method returns an Integer array containing the indexes of the

selected rows. The following example updates a label to show these indexes:

Public Sub gridTest_AfterSelectedRowsChanged(sender As Object,

 e As finPageObjectAfterSelectedRowsChangedEventArgs)

Handles gridTest.AfterSelectedRowsChanged

 Dim i As Integer

 Dim strTemp As String

 For Each i In gridTest.GetSelectedRowIndexes()

 If Len(strTemp) <> 0 Then strTemp &= ","

 strTemp &= CStr(i)

 Next

 lblSelectedRows.Text = strTemp

End Sub

Printing

As per any grid within finPOWER Connect, Grid type Page Objects can be printed by right-

clicking on the Grid and selecting the Print option.

Grids can also be printed from Script code, e.g.:

Public Sub cmdPrint_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdPrint.Click

 gridTest.Print()

End Sub

Saving and Loading Grid Layout

The grid's layout, e.g., its column widths can be saved and loaded from the Page Set Script.

The following methods handle the grid's layout:

• LayoutSave()

o Save the grid's layout.

 NOTE: As per normal form layouts, this is saved on a per-User basis to the finPOWER

Connect's Registry database table.

• LayoutLoad()

o Load the grid's layout.

Page 65 of 141

 NOTE: If no layout has previously been saved, this will simply reset the grid's layout

to its initial state.

• LayoutReset()

o Reset the grid's layout to its initial state.

• LayoutClearSaved()

o Clear the grid's previously saved layout and reset the grid's layout to its initial state.

NOTE: Typically, you would use a button below the grid to save the grid's layout and then

restore the saved layout using the LayoutLoad() method in the Page Set Script's

Initialise() method.

Other Properties

The following grid properties can also be set to control the grid's appearance. These should be

set in the Initialise method when the grid is first configured:

• ShowRowNumbering = True

o Show the row number in the row selector.

• ShowSelectionOpaque = True

o Causes the selected and active row colouring to become opaque so that the grid row's

colour can be seen regardless of whether a row is selected or not. This is used on certain

grids within finPOWER Connect such as Logs and Task Manager grids.

Events

The following events are available for Grids:

• AfterRowActivate

o Occurs after the current (active) grid row has changed.

o Use this event for functionality such as updating an HTML Summary Page for the active

grid row.

• AfterSelectedRowsChanged

o Occurs after the row selection has changed.

o Use this event for functionality such as updating grid button states, e.g., a 'Delete'

button that acts on all selected rows and should therefore be disabled if no rows are

selected.

WARNING: Do not use this event for updating information based on the currently active

grid row. Use the AfterRowActivate event instead.

• BeforeCellUpdate

o Occurs when a cell's value has been updated by the User.

• InitialiseRow

o Occurs for each row in the grid and allows the grid's cell values to be set.

• RowDrilldown

o Occurs when a drilldown button is clicked.

• ButtonClick

o See Buttons.

FAQ

• How do I make a cell read-only?

Page 66 of 141

o Use the InitialiseRow event to change the read-only state of the cell, e.g.:

e.Row.Cells("ClientId").ReadOnly = iseDefaultableBoolean.True

NOTE: You cannot make a cell in a read-only column not read-only.

• How do I set a cell's icon.

o Use the InitialiseRow event to change the icon-type column's cell value to a valid icon

resource Id, e.g.:

e.Row.Cells("Icon").Value = "Account" ' Account icon

e.Row.Cells("Icon").Value = "Flag[Red]" ' Red flag

e.Row.Cells("Icon").Value = "Colour[#00FF00]" ' Green colour block

• How do I define what happens when I click a drilldown button?

o Use the RowDrilldown event and act based on the column's key, e.g.:

Select Case e.ColumnKey

 Case "Drilldown"

 ' Show Clients form

 finBL.ExecuteApplicationShortcutUrl("FormShow?form=Clients&id=" &

finBL.Runtime.HtmlUtilities.UrlEncode(mItems(e.ListIndex).ClientId))

 Case "Drilldown_Account"

 ' Show Accounts form

 finBL.ExecuteApplicationShortcutUrl("FormShow?form=Accounts&id=" &

finBL.Runtime.HtmlUtilities.UrlEncode(mItems(e.ListIndex).AccountId))

End Select

NOTE: The Id of all drilldown columns is prefixed by 'Drilldown'

• How do I show row numbering on a grid?

o Set the grid's ShowRowNumbering property, e.g.:

gridTest.ShowRowNumbering = True

• How do I clear a grid?

o Typically to clear a grid, you would clear the items from the collection or rows from the

data table that the grid is bound to and then call the VirtualDataRefresh() method,

e.g.:

CollectionForGrid.Clear()

gridTest.VirtualDataRefresh()

• How do I show or hide a grid column?

o Use the Visible property of a grid's column to hide or show it, e.g.:

gridAccounts.Columns("Description").Visible = False

• How do I clear all selected rows and the active row?

o To clear all selected rows, use the grid's SelectedRowsClear() method.

o To clear the active row, set the grid's ActiveDataRowIndex property to -1.

gridAccounts.SelectedRowsClear()

gridAccounts.ActiveDataRowIndex = -1

o

Page 67 of 141

Page 68 of 141

Image
An Image type Page Object is used to display an image such as a company logo or a built-in

finPOWER Connect icon.

When specifying an Image's file name, you can use either a local or network filename or a

URL.

The image should be either a GIF, JPEG, ICO or PNG type image.

An image can be embedded into the Page Set. Once embedded, the file name is no longer

required.

A preview of the image is displayed in the Page Object wizard and from here, the Page Object's

size can be updated via a hyperlink to match the image size:

Image Size Modes

By default, the Image will be displayed at its actual size meaning that, depending on the Page

Object size, it may appear clipped.

The following Size Modes can be specified:

• Normal

o Default. The image will be clipped if the Page Object is too small to fit it. If the Page

Object is larger than the image, white-space will appear to the right and below the

image.

• Center

o The image will be centered both horizontally and vertically within the Page Object.

• Stretch

o The image will be stretched to fit the Page Object. This may lead to the image becoming

distorted if the Page Object's aspect ratio does not match the image's aspect ratio.

• Zoom

Page 69 of 141

o The image will be zoomed to fit the Page Object. The image will not be distorted since its

aspect ratio will be retained. This may lead to white space to the right and below the

image depending on the Page Object's aspect ratio.

Updating the Image

Script code can update the image by specifying a different file name or URL, e.g.:

Public Sub cmdTest_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdTest.Click

 imgTest.ImageFileName = "http://www.intersoft.co.nz/images/intersoft.gif"

 imgTest.ImageSizeMode = isefinPageObjectImageSizeMode.Zoom

End Sub

Or, by specifying a built-in icon and, optionally, an overlay icon, e.g.:

Public Sub cmdTest_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdTest.Click

 imgTest.ImageFileName = "Account,Search "

End Sub

NOTE: If the Image File Name does not contain a dot or backslash, it is assumed to be a built-

in Icon.

Events

The following events are available for Images:

• Click

o Occurs when the Image is clicked.

Page 70 of 141

Button Strip
An Button Strip type Page Object is used to display a toolbar or a strip of buttons under

another Page Set such as an HTML Panel (Grids have their own, built-in Button Strip).

Auto-sizing of a Button Strip is as per Grids and HTML Panels, i.e., they will size to fit the Page

Width if their Width is set to zero or, if the Width is non-zero, they will size to fit the Page

Width up to a maximum of the specified Width.

Buttons

The Buttons collection is the same as other Page Objects and is detailed in the Buttons section.

Border Style

A Button Strip can have one of the following border styles:

• None

o No border.

• Bottom Only

o A border will appear beneath the Button Strip only.

 This is useful if the Button Strip is positioned at the top of a Page, e.g., if will look

more like a toolbar.

• Bottom, Left and Right

o A border will appear at the bottom and left and right of the Button Strip.

o This is useful if the Button Strip is positioned beneath another Page Object and should

appear as being 'joined' to the Page Object above (E.g., an HTML Panel of a multi-line

TextBox).

• Top Only

o A border will appear at the top of the Button Strip only.

o This is useful if the Button Strip is positioned at the bottom of a Page but should not

appear as being 'joined' to the Page Object above (E.g., an HTML Panel of a multi-line

TextBox).

Events

The following events are available for Button Strips:

• ButtonClick

o See Buttons.

Page 71 of 141

Columns Start
A Columns Start type Page Object is used to start a multi-column section within a 'Flow' layout

Page.

For an example of a multi-column layout, see Using Column Page Objects.

The number of columns and, optionally, the widths of the columns can be specified in the Page

Object wizard, e.g.:

The 'Columns' are specified as a comma-separated list with an entry for each column. Column

widths can be defined as:

• Wildcard '*'

o Apportions columns equally, e.g., *,*,*

 Creates 3 columns of equal width.

o Takes up the remaining space, e.g., 300px,*

 Create 2 columns, the first being 300 pixels wide and the second taking up the

remaining Page width.

• Pixel values

o Sets a column to the specified number of pixels, e.g., 300px,200px,200px

 Creates 3 columns, the first being 300 pixels wide and the next two being 200 pixels

wide.

• Percentages

o Gives each column a percentage of the Page width, e.g., 60%,40%

 Creates 2 columns, the first being 60% of the Page width and the second, 40%.

• A minimum column width can also be specified using square brackes, e.g.:

o *[200px],*

 Creates 2 columns of equal width under normal circumstances but ensures that the

first column is never less than 200 pixels wide.

• If the Page is 500 pixels wide, each column would be (excluding spacing), 250

pixels.

• If the Page is 350 pixels wide, the first column would be 200 pixels wide and the

second 150 pixels (excluding spacing).

WARNING: Do not attempt to nest multi-column sections within each other; this will lead to

unpredictable results and is not supported.

Page 72 of 141

Column Break
A Column Break type Page Object is used to denote the end of a column in a multi-column

section within a 'Flow' layout Page.

For an example of a multi-column layout, see Using Column Page Objects.

The number of column breaks must match the number of columns defined in the Columns

Start Page Object.

Page 73 of 141

Account Payment Details
An Account Payment Details type Page Object is used to display or enter Payment Details for

an Account.

This Page Object consists of multiple controls which cannot be accessed independently.

Currently, the caption width cannot be set for this type of Page Object, they are set at 80

pixels. Also, internally, all controls are indented by 8 pixels.

Showing Account Payment Details

The following code example shows how to populate this Page Object from an Account's

Payment Details. The page contains a DBComboBox named cboAccounts and the Payment

Details are updated whenever this is changed:

' Objects

Private mAccount As finAccount

Public Overrides Function Initialise() As Boolean

 ' Assume Success

 Initialise = True

 ' Initialise

 mReports = DirectCast(psh.Reports, ISfinReports)

 mUI = DirectCast(psh.UserInterface, ISUserInterfaceBL)

 ' Create Objects

 mAccount = finBL.CreateAccount()

 ' Controls

 With pdaPaymentDetails

 .PaymentFlowDirection = isefinPaymentMethodPaymentFlowDirection.Incoming

 .Account = mAccount

 End With

End Function

Public Sub cboAccount_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles cboAccount.Change

 ' Handled

 If e IsNot Nothing Then e.ChangeHandled = True

 ' Load Account

 If Len(cboAccount.Text) = 0 Then

 mAccount.Clear()

 Else

 If Not mAccount.Load(cboAccount.Text) Then

 mUI.ErrorMessageShow()

 End If

 End If

 ' Upate Payment Details

 pdaPaymentDetails.BankingDetails =

mAccount.BankingDetails(isefinAccountBankingDetailsType.Incoming).ToBankingDetailsForDisplay(False

)

End Sub

Reading Account Payment Details

The values displayed in this Page Object can be accessed via the BankingDetails property of

the Page Object.

Events

The following events are available for Account Payment Details:

• Change

o Occurs when any of the controls within this Page Object are changed.

Page 74 of 141

Advanced Layouts

Multi-Column Layouts
Multi-column layouts can be useful, e.g., for presenting a table of information such as the

entry of multiple cheque details, or, for preventing a Page from becoming too long, e.g., by

presenting Main and Joint borrower details next to each other in an Account Application.

Using Page Objects Kept on the Same Line

Keeping Page Objects on the same line and ensuring their widths are the same allows a table-

like effect to be achieved, e.g.:

In this example:

• Each 'Qty' Page Object has its Caption Width set to 0 rather than to Auto-Size.

o If set to Auto-Size, the caption (even although it is blank) would be sized to match the

widest Page Object caption, i.e., 'Client:'.

• Each of the 'Description' and 'Price' Page Objects are configured to 'Keep on the same line

as the previous Page Object'.

• The 'Total' NumberBox (at the bottom of the 'Price' column, and selected in the above

screenshot) is configured to 'Left Align With' one of the 'Price' Page Objects.

o Left aligning with a 'Price' Page Object ensures that the Page Objects line up nicely.

Page 75 of 141

Using Column Page Objects

For 'Flow' layout Pages, the following types of Page Object can be used to achieve a multi-

column Layout:

• Columns Start

o Denotes the start of a multi-column section.

o Defined the number of columns in the section and, optionally their widths.

• Column Break

o Denotes a column break (i.e., the end of a particular column) within a multi-column

section.

o The number of 'Column Break' Page Objects should match the number of columns

defined in the 'Columns Start' and, once the final 'Column Break' has been reached, the

multi-column section is ended.

The following example shows a column of Page Objects to the left and a right-hand column

containing only an HTML Panel which, in this case would be to display a financial summary

from the figures entered to the left:

In this example:

• The 'Columns Start' is indicated as a horizontal orange line spanning the width of the page.

• Each 'Column Break' is indicated as a horizontal yellow line spanning the width of the

column.

o The second column break overlaps the HTML Panel since the HTML Panel's height is

specified as 252 but it is set to 'Size to fill empty space on the Page' which, when the

Page Object resides in a column, means that it will size to fill the entire column.

• The 'Columns Start' Page Object is configured as follows:

The makes the first column 350 pixels wide and the second column will fill the remaining

Page width. A spacing of 4 pixels separates the columns.

Page 76 of 141

The next example shows how you can arrange two Clients' (or Applicant) details next to each

other:

In this example:

• The 'Columns Start' is indicated as a horizontal orange line spanning the width of the page.

• 'Column Break' Page Objects are not visible since the columns a taller than the screenshot.

• The 'Columns Start' Page Object is configured as follows:

The makes both columns 500 pixels wide with a gap of 8 pixels between columns.

Page 77 of 141

Advanced Scripting

Script Objects
The entire Page Set has access to a special Page Set Handler object, accessed via the psh

property. The Initialise method of the Page Set creates shortcuts to the UI and Reports

objects as follows (from the template Script).

' Reporting and User Interface Objects

Public mReports As ISfinReports

Public mUI As ISUserInterfaceBL

Public Overrides Function Initialise() As Boolean

 ' Assume Success

 Initialise = True

 ' Initialise

 mReports = DirectCast(psh.Reports, ISfinReports)

 mUI = DirectCast(psh.UserInterface, ISUserInterfaceBL)

End Function

psh

The Page Set Handler (a finPageSetHandler type object) is the object which controls a Page

Set.

This is accessed through the psh property which is defined on the Script class's base.

Some of the more commonly used Page Set Handler properties are:

• Pages

o A collection of Pages.

o This is typically used in a 'Tabbed Pages' or 'Single Page' type Page Set to show or hide

pages, e.g.:

psh.Pages("Individual").Visible = False

• CurrentPage, CurrentPageId, CurrentPageIndex

o These are references to the current page.

o Typically, these would only be used in a 'Tabbed Pages' or 'Single Page' type Page Set,

e.g., to show a particular page you could do:

psh.CurrentPageId = "Individual"

• FormHeadingColour

o Allows the background colour of the form heading area to be changed.

o This is specified as either a blank String (to use the default colour) or as an HTML style

colour, e.g.:

psh.FormHeadingColour = "red"

• FormTitle

o Allows the Form Title (shown in the form heading area) to be overridden.

 By default, this is set to the current Page's Description.

• NavigationMethod

o This is a read-only property detailing the Page Set's Navigation Method.

o Normally this would be the value that is defined on the Page Set but it can be overridden

using an Application Shortcut or from an Account Application.

Page 78 of 141

o A Page Set Script might check this in its Initialise method and, if displaying a 'Wizard'

type Page Set as 'Tabbed Pages' (which is what Account Applications do once past the

initial data capture phase), hide pages that are not applicable.

• ReadOnly

o This indicates whether the Page Set is in read-only mode.

o A Page Set Script should check this and never update underlying objects if it is True.

Some of the more commonly used Page Set methods are:

• FormClose()

o Close the Page Set form.

• FormRefresh(formKey, recordId, newRecord)

o Send a message to another finPOWER Connect form, asking it to refresh itself, e.g., if a

Page Set has updated Account 'L10000', the following will refresh any open Accounts

form currently displaying the record:

psh.FormRefresh("Accounts", "L10000")

NOTE: To see the Form Key of any finPOWER Connect form (apart from Modal forms),

right-click the Form's tab and select Special, Form Details.

• GetBoolean(name), GetDate(name), GetString(name) etc

o These methods get a Page Object's value given the Page Object name.

o Generally, a Script would access the Page Object directly, e.g.,

value = txtFirstName.Text

 If, say, a Page Set has multiple versions of a particular Page Object with a similar

name, e.g., txtFirstName1, txtFirstName2, txtFirstName3, the following code could

access them within a loop, e.g.:

For i = 1 to 3

 value = psh.GetString("txtFirstName" & CStr(i))

Next

• SetValue(name, value)

o Set a Page Object's value based on its name, e.g.:

psh.SetValue("txtFirstName1", "Dave")

• ValidatePageObjects(currentPageOnly)

o Causes the Page Set to validate Page Objects as if the OK, Next > or Finish buttons

have been clicked, i.e., beep and focus on any invalid Page Object (E.g., a mandatory

TextBox with no text entered).

If Not psh.ValidatePageObjects(False) Then

 mUI.MsgBox("Invalid!")

End If

NOTE: For Wizards, currentPageOnly will always be assumed to be True.

NOTE: Methods to show special forms such as the 'Financial Details' form are discussed in the

Showing Special Forms section and those relating to Group Tags are discussed in the Group

Tags section.

Page 79 of 141

mUI

mUI (a ISUserInterfaceBL type object) is assigned in the Page Set Script's Initialise method

and is a shortcut to a cut-down version of the User Interface functionality that finPOWER

Connect User uses.

The most common use of mUI is to show message boxes and error messages using these

methods of mUI:

• ErrorMessageShow()

o Shows the latest error message from the finPOWER Connect business layer (or set from

the Script via finBL.Error.ErrorBegin).

• MsgBox(prompt, buttons)

o Shows a message box and returns the button clicked by the User.

o The 'prompt' parameter is the message to display.

o The 'buttons' parameter an Enum of buttons to show and the type of icon to display.

These are bit flags, e.g., the following will cause a 'Question' icon to display along with

'Yes' and 'No' buttons of which the 'No' button is the default (focused) button:

MsgBoxStyle.YesNo Or MsgBoxStyle.Question Or MsgBoxStyle.DefaultButton2

mUI.CommonDialog can be used to display modal forms. Most of the methods return a Boolean

value where False indicates that the User has cancelled the dialog. Some of the more common

methods are:

• GetFileOpen(returnFileName, defaultFileName, title, filter)

o Shows the standard Windows 'File Open' dialog and has a ByRef returnFileName

parameter which contains the selected file name.

o The filter parameter restricts which files are listed as is formatted as per the following

example (pipe separated values):

All Files (*.*)|*.*|Excel Files (*.xls;*.xlsx)|*.xls;*.xlsx|PDF Files

(*.pdf)| *.pdf

• GetInput(text, [title, heading, caption, maxLength, multiLine])

o Shows a dialog into which the User can enter a text value.

mUI.CommonForms can be used to display non-modal forms. Some of the more common

methods are:

• ShowAddressMap(address, [windowTitle, icon, showModal])

o Shows an HTML viewer locating the supplied address (an ISAddressDetails object).

• ShowDataSetViewer(dataSet, [caption, formKey])

o Shows a DataSet, e.g., the result of a database query.

• ShowHtmlViewer(html, [caption, formkey, icon, tempFileExtension, showModal])

o Shows an HTML viewer to display the supplied HTML.

Page 80 of 141

A sample of other useful methods available via mUI and its sub-objects is shown below:

Method Description

mUI

GetCodeDescriptionListFromEnquiryAction

Returns a list of records of the specified type

displayed on other forms, e.g., specifying an

'actionId' parameter of 'GetAccounts' will

return a list of Account codes displayed on

other open forms.

This is the mechanism used to present the

User with a list of codes when right-clicking in

a DBComboBox such as the Account box on

the Account Close wizard.

mUI.CommonForms

ShowDataSetViewer

Show a form to display a DataSet.

This form allows the DataSet to be exported

to various formats such as MS Word and

Excel.

ShowHtmlViewer Show a form to display HTML.

ShowAddressMap
Show a form to display an Address Map from

the supplied ISAddressDetails object.

mUI.CommonDialog

GetInput
Prompts to User with a popup box into which

to enter a text value.

GetInputNumber
Prompts to User with a popup box into which

to enter a number value.

GetListSelection
Prompts to User with a popup box from which

to select a value from a list.

Page 81 of 141

mReports

mReports (an ISfinReports type object) is assigned in the Page Set Script's Initialise

method and is a shortcut to finPOWER Connect's reporting functionality.

This functionality can be used to run built-in Queries and Reports.

NOTE: Currently, only Queries can be manipulated via the business layer. Reports can only be

run via Application Shortcuts and functionality is therefore very limited.

The following example runs the Account List query and shows the results:

Public Sub cmdRunQuery_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdRunQuery.Click

 Dim Query As ISQueryBase

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Create Query

 Ok = mReports.CreateQuery(isefinQueryType.AccountList, Query)

 ' Execute Query

 If Ok Then

 ' Update Parameters

 With Query.Parameters

 .SetString("AccountTypes", "VL,CC,RC")

 End With

 ' Set Columns to include

 Query.Columns.SetIncluded("AccountId,Description,AccountTypeId,Balance,StatusText")

 ' Execute Query

 Ok = Query.Execute()

 End If

 ' Show Results

 If Ok Then

 mUI.CommonForms.ShowDataSetViewer(Query.DataSet, "Account List Results")

 End If

 ' Error

 If Not Ok Then

 mUI.ErrorMessageShow()

 End If

End Sub

When using a Query from a Script, it is helpful to know the names of the parameters and

columns that the Query uses. This is achieved as follows:

• Open the Run Query wizard (Reporting, Run Query).

• Right-click form tab and select Special, Query and Report Details.

This shows details about the Query's Parameters and Columns, e.g.:

Page 82 of 141

Page Set Events
Many Page Set events are described elsewhere in this document. This section details with

some of the more advanced, miscellaneous events.

PageSetActivate

This event fires when the Page Set is activated.

When this event fires depends on the type of Page Set and an ActivateReason event property

can be used to determine why this event was called:

• Single Page, Tabbed Pages, Wizard

o When the Page Set form is activated, e.g., when the User switches from another form to

the Page Set form.

o The following Activate Reasons apply to these types of Page Sets:

 FormActivate

• The Page Set form has been activated, e.g., it was not the active form but has now

become the active form.

o NOTE: This event will NOT fire when the Page Set form is first displayed. This is by

design.

• Inline Tabs

o Every time the Page Set is activated, e.g., in the Task Manager this would be every time

the Folder displaying the Page Set is selected or, in the case of a the Task Manager

'Home Page' Page Set, every time the 'Home' tab is selected.

o The following Activate Reasons apply to these types of Page Sets:

 FormActivate

• The Page Set form has been activated, e.g., it was not the active form but has now

become the active form.

 FormRefresh

• The form hosting the Page Set has been refreshed, e.g., by the User pressing F5.

 TabActivate

o The tab (or page) on the form hosting the Page Set has been refreshed, e.g., in

the Task Manager form the User has switched to the 'Home' tab.

o NOTE: This event fires every time the Page Set is activated, including the first time it is

activated. Also, for Task Manager Explorer folders that display a Page Set, only the

FromRefresh reason is used.

This event can be used to achieve the following type of functionality:

• Refresh a Summary Page whenever this form is activated.

• Refresh a dropdown list whenever this form is activated.

o For example, the Page Set may contain a 'Branch' DbComboBox based on the 'Branches'

standard range.

 By calling cboBranch.DataSourceRefresh() from the PageSetActivate event, the list

will display any new Branches, e.g., if the User has the Branches form open and has

just added a new Branch record and then re-activated the Page Set form.

WARNING: Attempting to perform intensive tasks, such as refreshing a list of Accounts, every

time the Page Set form is activated may cause performance issues.

Page 83 of 141

ActionNotification

Most built-in forms within finPOWER Connect support the concept of 'Notification Actions'.

For example, the Accounts form can response to an 'AccountLogsRefresh' notification by

refreshing its Logs grid. This notification is sent to the form in many situations, e.g., upon

saving a new Account Log record.

Using this event, a Page Set can response to this type of notification. However, most

notification also receive 'Notification Data' which the recipient can use to decide what to do.

For example, the 'AccountLogsRefresh' notification may contain a Key/ Value List detailing

whether a Log has been deleted or the Id of the Account for which a new Log has been added.

The following table details some of the more common Notification Actions and when their

Notification Data is likely to contain:

Action Id Description Notification Data

AccountLogsRefresh

An Account Log has

been added, updated or

deleted (from the Log

form).

Nothing or an ISKeyValueList which

may contain any of the following:

AccountId (String)

LogPk (Integer)

Added (Boolean)

Deleted (Boolean)

MultipleEffected(Boolean)

ClientLogsRefresh

A Client Log has been

added, updated or

deleted (from the Log

form).

Nothing of an ISKeyValueList which

may contain any of the following:

ClientId (String)

LogPk (Integer)

Added (Boolean)

Deleted (Boolean)

MultipleEffected(Boolean)

AccountRefresh

An Account has been

added (via New wizard),

updated or deleted.

Nothing or an ISKeyValueList which

may contain any of the following:

AccountId (String)

AccountPk (Integer)

Added (Boolean)

Deleted (Boolean)

ClientRefresh

A Client has been added

(via New wizard),

updated or deleted.

Nothing or an ISKeyValueList which

may contain any of the following:

ClientId (String)

ClientPk (Integer)

Added (Boolean)

Deleted (Boolean)

WARNING: Improper handling of Notification Actions may result in poor Page Set

performance.

NOTE: Notifications are a mechanism built into the finPOWER Connect Windows User

Interface; not the business layer. Notifications will only be fired where implemented and may

not always be fired where you might expect.

Page 84 of 141

This event can also be used to respond to Custom Form Actions. For example, a Summary

Page displayed in an HTML Panel could contain an Application Shortcut hyperlink to call a

special Action to add a Client Log, e.g.:

app://FormAction?action=AddClientLog&clientId=C10000&subject=My Subject

This will fire the Page Set's ActionNotification event passing in an actionId of 'AddClientLog'

and notificationData as 'clientId=C100001&subject=My Subject'.

The Page Set can then handle this and parse the notificationData into a Key/ Value List to

simplify retrieval of the parameters, e.g.:

Public Sub PageSet_PageSetActionNotification(sender As Object,

 e As

finPageSetHandlerPageSetActionNotificationEventArgs) Handles Me.PageSetActionNotification

 Dim kvl As ISKeyValueList

 Select Case e.ActionId

 Case "AddClientLog"

 ' Parse parameters

 kvl = finBL.CreateKeyValueList()

 If TypeOf e.NotificationData Is String Then kvl.FromUrlString(CStr(e.NotificationData))

 ' Validate

 If Len(kvl.GetString("clientId")) = 0 Then

 mUI.MsgBox("Client Id not specified.", MsgBoxStyle.Exclamation)

 Exit Sub

 End If

 ' Add Client Log

 Action_AddClientLog(kvl.GetString("clientId"), kvl.GetString("subject", "Default Subject"))

 End Select

End Sub

Private Sub Action_AddClientLog(clientId As String,

 subject As String)

 Dim ClientLog As finClientLog

 ClientLog = finBL.CreateClientLog()

 With ClientLog

 ' Update

 .ClientId = clientId

 .Subject = subject

 ' Save

 If .Save() Then

 mUI.MsgBox(String.Format("Log added for Client '{0}'.", clientId),

 MsgBoxStyle.Information)

 Else

 mUI.ErrorMessageShow()

 End If

 End With

End Sub

Public Sub cmdAddLog_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdAddLog.Click

 Action_AddClientLog("C10000", "My Subject")

End Sub

NOTE: This mechanism is similar to the CustomHyperlinkClick event that an HTML Panel can

handle but is centralised and is not dependent on any particular HTML Panel handling it.

In the above example, both a hyperlink in an HTML Panel and a button (cmdAddLog) can be

used to add a new Client Log.

Page 85 of 141

The ActionNotification event can also be fired by the Page Set Handler (psh) using either of the

following methods:

• ExecuteAction(actionId, [notificationData])

o Fire the ActionNotification event optionally passing in notification data.

• ExecuteActionKeyValueList(actionId, notificationData)

o Fire the ActionNotification event passing in notification data in the form of an

ISKeyValueList object.

Page 86 of 141

Showing Another Page Set
Sometimes it may be desirable to show another Page Set from a Page Set, e.g., to allow

updating of a sub-object such as an Account Client from a Page Set which deals with entering

an Account.

This is achieved in the following way:

• Use the psh.FormShowPageSet() method to open another, sub-Page Set.

o Optionally, pass in the current Page Set's main object (E.g., a finAccount object) or a

sub-object (E.g., finAccount.Clients(0)) as the dataSource parameter.

 This is available to the sub-Page Set via psh.DataSource.

o The sub-Page Set will be displayed pseudo-modally to the main Page Set.

• The sub-Page Set can then perform whatever action is necessary and then close itself.

o The sub-Page Set can access the main Page Set via psh.ParentPageSet.

 Generally there should be no reason to do this.

• The main Page Set then handles the PageSetFormClosed event and decides what to do.

o This might be nothing if the sub-Page Set was cancelled or it might be to refresh certain

details (E.g., a grid of Account Clients).

Page 87 of 141

Showing Special Forms
The Page Set Handler can show various special forms.

These are shown via one of the psh.FormShowXXX methods. Apart from psh.FormShowPageSet

(the previous section). The more common forms are described below.

Account Application Applicant

This form allows the editing of an existing or the addition of a new Account Application

Applicant via the built-in New Applicant wizard.

NOTE: This form is only available if licensed for the Account Application Add-On.

The following example assumes that the Page Set Script has an mAccountApp variable which is

a finAccountApp object. A grid type Page Object is being used to display the Applicants and

this has a drilldown button and an 'Add' button:

Public Sub gridApplicants_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

gridApplicants.ButtonClick

 Select Case e.ButtonId

 Case "Add"

 If Not psh.FormShowAccountAppApplicant(mAccountApp) Then

 mUI.ErrorMessageShow()

 End If

 End Select

End Sub

Public Sub gridApplicants_RowDrilldown(sender As Object,

 e As finPageObjectRowDrilldownEventArgs) Handles

gridApplicants.RowDrilldown

 ' Edit Applicant

 If Not psh.FormShowAccountAppApplicant(mAccountApp, mAccountApp.Applicants(e.ListIndex)) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowAccountAppApplicant method may return an error, e.g., if not licensed

for the Account Application Add-On.

The FormShowAccountAppApplicant method has the following parameters:

• accountApp

o A finAccountApp object.

• accountAppApplicant (optional)

o The Applicant to edit or Nothing to add a new Applicant to the collection.

When this wizard is closed, the Page Set can use the 'AccountAppApplicantFormClosed' event.

The following example refreshes a grid of Applicants when the form is closed:

Public Sub PageSet_AccountAppApplicantFormClosed(sender As Object,

 e As

finPageSetHandlerAccountAppApplicantFormClosedEventArgs) Handles Me.AccountAppApplicantFormClosed

 ' Refresh Applicants Grid and select edited Applicant

 If Not e.Cancelled Then

 gridApplicants.VirtualDataRefresh(mAccountApp.Applicants.IndexOf(e.AccountAppApplicant))

 End If

End Sub

Page 88 of 141

Account Application Collateral Item

This form allows the editing of an existing or the addition of a new Account Application

Collateral Item via the built-in New Collateral Item wizard.

NOTE: This form is only available if licensed for the Account Application Add-On.

The following example assumes that the Page Set Script has an mAccountApp variable which is

a finAccountApp object. A grid type Page Object is being used to display the Collateral Items

and this has a drilldown button and an 'Add' button:

Public Sub gridCollateralItems_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

gridCollateralItems.ButtonClick

 Select Case e.ButtonId

 Case "Add"

 If Not psh.FormShowAccountAppCollateralItem(mAccountApp) Then

 mUI.ErrorMessageShow()

 End If

 End Select

End Sub

Public Sub gridCollateralItems_RowDrilldown(sender As Object,

 e As finPageObjectRowDrilldownEventArgs) Handles

gridCollateralItems.RowDrilldown

 ' Edit Collateral Item

 If Not psh.FormShowAccountAppCollateralItem(mAccountApp,

mAccountApp.CollateralItems(e.ListIndex)) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowAccountAppCollateralItem method may return an error, e.g., if not

licensed for the Account Application Add-On.

The FormShowAccountAppCollateralItem method has the following parameters:

• accountApp

o A finAccountApp object.

• accountAppCollateralItem (optional)

o The Collateral Item to edit or Nothing to add a new Collateral Item to the collection.

When this wizard is closed, the Page Set can use the 'AccountAppCollateralItemFormClosed'

event. The following example refreshes a grid of Collateral Items when the form is closed:

Public Sub PageSet_AccountAppCollateralItemFormClosed(sender As Object,

 e As

finPageSetHandlerAccountAppCollateralItemFormClosedEventArgs) Handles

Me.AccountAppCollateralItemFormClosed

 ' Refresh Collateral Items Grid and select edited Collateral Item

 If Not e.Cancelled Then

gridCollateralItems.VirtualDataRefresh(mAccountApp.CollateralItems.IndexOf(e.AccountAppCollateralI

tem))

 End If

End Sub

Page 89 of 141

Account Financial

This form allows the editing of full Account financial details as per the Financial page of the

New Account wizard.

This form would typically be used by a Page Set designed to enter an Account Quotation or an

Account Application.

The following example assumes that the Page Set Script has an mAccount variable which is a

finAccount object:

Public Sub cmdEditFinancial_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdEditFinancial.Click

 If Not psh.FormShowAccountFinancial(mAccount) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowAccountFinancial method may return an error, e.g., if the Account does

not have sufficient information to allow editing of financial details.

The FormShowAccountFinancial method has the following parameters:

• account

o A finAccount object.

 In the case of Account Applications, this will generally be created on-the-fly using the

finAccountApp.CreateAccount() method.

• forceAutomaticRecalculation

o Indicates whether to force automatic recalculation to occur (i.e., the User does not have

to click the 'Calculate' button) when editing financial details regardless of the User's

preferences.

• allowCancel

o Indicates whether to enable the 'Cancel' button. This should only be True when dealing

with a temporary Account, e.g., an Account created on-the-fly from an Account

Application.

• allowAccountTypeSelection

o Indicates whether to allow Account Type Selection, i.e., whether the User can use the '<

Back' button to move from the Financial page of the wizard to a page that allows the

Account Type to be selected.

Page 90 of 141

Account Payment Arrangement Add

This form allows adding of an Account Payment Arrangement (or Promise if the User does not

have permission to add a Payment Arrangement).

The following example assumes that the Page Set Script has an mAccount variable which is a

finAccount object:

Public Sub cmdEditFinancial_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdEditFinancial.Click

 If Not psh.FormShowAccountPaymentArrangementAdd(mAccount) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowAccountAccountPaymentArrangementAdd method may return an error,

e.g., if the Account is not saved.

The FormShowAccountFinancial method has the following parameters:

• account

o A finAccount object.

When this wizard is closed, the Page Set can use the

'AccountPaymentArrangementAddFormClosed' event, e.g., to refresh on-screen details:

Public Sub PageSet_AccountPaymentArrangementAddFormClosed(sender As Object,

 e As finPageSetHandlerAccountPaymentArrangementAddFormClosedEventArgs) Handles

Me.AccountPaymentArrangementAddFormClosed

 mUI.MsgBox(e.AccountId & ": " & e.Cancelled & ": " & e.AccountPaymentArrangementPK)

End Sub

Page 91 of 141

Account Schedule

This form shows an Account Schedule.

This form would typically be used by a Page Set designed to enter an Account Quotation or an

Account Application.

The following example assumes that the Page Set Script has an mAccount variable which is a

finAccount object:

Public Sub cmdShowSchedule_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdShowSchedule.Click

 If Not psh.FormShowAccountSchedule(mAccount) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowSchedule method may return an error, e.g., if the Account does not have

sufficient information to allow showing of an Account schedule.

The FormShowAccountSchedule method has the following parameters:

• account

o A finAccount object.

 In the case of Account Applications, this will generally be created on-the-fly using the

finAccountApp.CreateAccount() method.

• accountCalc

o An optional Account Calculation object. If omitted, the Account's current Calculation will

be used.

• allowEdit

o Indicates whether to enable editing functionality on the Account Schedule Form. If True,

this will ignore the 'accountCalc' and use the Account's current Calculation.

• gotoWhatIf

o Indicates whether to go to the first 'What If' Schedule entry, e.g., a 'What If' Account

Payment.

Page 92 of 141

Account Temp

This form shows an Account form for the supplied, temporary Account object, e.g., an Account

generated from an Account Application.

The following example assumes that the Page Set Script has an mAccount variable which is a

finAccount object:

Public Sub cmdShowAccount_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdShowAccount.Click

 If Not psh.FormShowAccountTemp(mAccount) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowAccountTemp method may return an error, e.g., if the Account does not

have sufficient information to allow showing via the Accounts form.

The FormShowAccountTemp method has the following parameters:

• account

o A finAccount object.

 In the case of Account Applications, this will generally be created on-the-fly using the

finAccountApp.CreateAccount() method.

• heading

o The form heading text or a blank String to use the default heading.

• summary

o The form summary text or a blank String to use the default summary text.

• windowTitle

o The window title text or a blank String to use the default window title.

Page 93 of 141

Address Search

This form is a modal Address Search drilldown and is only available if licensed for the

Addressing, Full Verification Add-On.

This form is used for searching on partial addresses and allowing the User to select the full

address, e.g.:

The following code sample is run from a 'Find' button added to a TextBox:

Public Sub txtClientAddressStreet_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

txtClientAddressStreet.ButtonClick

 Dim AddressDetails As ISAddressDetails

 Dim SelectedAddressDetails As ISAddressDetails

 ' Build Address Details to Search

 AddressDetails = finBL.CreateAddressDetails()

 With AddressDetails

 .StreetAddressFull = txtClientAddressStreet.Text

 .Suburb = cboClientAddressSuburb.Text

 .City = cboClientAddressCity.Text

 .Postcode = cboClientAddressPostcode.Text

 End With

 ' Show Search Form

 If psh.FormShowAddressSearch(AddressDetails, SelectedAddressDetails) Then

 ' Update Address Fields

 If SelectedAddressDetails Is Nothing Then

 ' Cancelled

 Else

 With SelectedAddressDetails

 txtClientAddressStreet.Text = .StreetAddressFull

 cboClientAddressSuburb.Text = .Suburb

 cboClientAddressCity.Text = .City

 cboClientAddressPostcode.Text = .Postcode

 End With

 End If

 Else

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The TextBox only has a single button hence this sample does not have a Select Case

to handle different buttons.

The FormShowAddressSearch method has the following parameters:

Page 94 of 141

• addressDetails

o An ISAddressDetails object.

 This can be populated with as many or as few address details as required, e.g., you

may choose to only set the StreetAddressFull property.

• addressDetailsSelected

o The Address that the User selected in the Address Search form.

The method returns False if the User cancelled the Address Search.

Page 95 of 141

Bank Account Enquiry Wizard

This form shows the Bank Account Enquiry wizard pseudo-modal to the Page Set form for

either a Client or an Account Application Applicant.

Public Sub cmdEnquiry_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdEnquiry.Click

 If Not psh.FormShowClientBankAccountEnquiry(mClient) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowClientBankAccountEnquiry and

FormShowAccountAppApplicantBankAccountEnquiry methods may return an error, e.g., if for

some reason the wizard cannot be displayed.

The FormShowClientBankAccountEnquiry method has the following parameters:

• client

o A finClient object.

• serviceId

o Optionally, the code of the Bank Account Enquiry Service to use.

The FormShowAccountAppApplicantBankAccountEnquiry method has the following

parameters:

• accountAppApplicant

o A finAccountAppApplicant object.

• serviceId

o Optionally, the code of the Bank Account Enquiry Service to use.

The Page Set Script can handle to BankAccountEnquiryFormClosed event to decide what to do

once the Bank Account Enquiry wizard has been completed of cancelled by the User, e.g.:

Public Sub PageSet_BankAccountEnquiryFormClosed(sender As Object,

 e As

finPageSetHandlerBankAccountEnquiryFormClosedEventArgs) Handles Me. BankAccountEnquiryFormClosed

 ' Bank Account Enquiry wizard completed

 If Not e.Cancelled Then

 ' Your code goes here

 End If

End Sub

Page 96 of 141

Client Temp

This form shows a Client form for the supplied, temporary Client object, e.g., a Client

generated from an Account Application.

The following example assumes that the Page Set Script has an mClient variable which is a

finClient object:

Public Sub cmdShowClient_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdShowClient.Click

 If Not psh.FormShowClientTemp(mClient) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowClientTemp method may return an error, e.g., if the Client does not have

sufficient information to allow showing via the Clients form.

The FormShowClientTemp method has the following parameters:

• Client

o A finClient object.

 In the case of Account Applications, this will generally be created on-the-fly using the

finAccountAppApplicant.CreateClient() method.

• heading

o The form heading text or a blank String to use the default heading.

• summary

o The form summary text or a blank String to use the default summary text.

• windowTitle

o The window title text or a blank String to use the default window title.

Page 97 of 141

Company Lookup

This form is a modal Company Lookup form and is only available if licensed for the Credit

Enquiry Add-On and configured for a country that supports company lookups, e.g., Australia or

New Zealand.

This form can be used to search for a company based on different search criteria, e.g.,

Company Name or Company Number, e.g.:

The following code sample is run from a 'Find' button added to two TextBoxes,

txtOrganisationName and txtCompanyNumber:

Public Sub txtCompany_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

txtOrganisationName.ButtonClick, txtCompanyNumber.ButtonClick

 Dim ExistingDetails As ISKeyValueList

 Dim DetailsToUpdate As ISKeyValueList

 Dim Results As ISKeyValueList

 Dim SearchBy As isefinCompanyLookupSearchBy

 Dim SearchQuery As String

 ExistingDetails = finBL.CreateKeyValueList()

 With ExistingDetails

 .SetString("CompanyName", txtOrganisationName.Text)

 .SetString("CompanyNumber", txtCompanyNumber.Text)

 End With

 If sender Is txtOrganisationName Then

 SearchBy = isefinCompanyLookupSearchBy.CompanyName

 SearchQuery = txtOrganisationName.Text

 Else

 SearchBy = isefinCompanyLookupSearchBy.CompanyNumber

 SearchQuery = txtCompanyNumber.Text

 End If

 If psh.FormShowCompanyLookup(SearchBy, SearchQuery, Results, ExistingDetails, DetailsToUpdate)

Then

Page 98 of 141

 If Results Is Nothing Then

 mUI.MsgBox("Cancelled by User.", MsgBoxStyle.Information)

 Else

 ' Update fields based on selected values (could use Results instead if we're not worried

about what the User selected)

 If DetailsToUpdate.Exists("CompanyName") Then txtOrganisationName.Text =

DetailsToUpdate.GetString("CompanyName")

 If DetailsToUpdate.Exists("CompanyNumber") Then txtCompanyNumber.Text =

DetailsToUpdate.GetString("CompanyNumber")

 End If

 Else

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The TextBoxes only have a single button hence this sample does not have a Select

Case to handle different buttons.

The FormShowCompanyLookup method has the following parameters:

• searchBy

o A isefinCompanyLookupSearchBy value to specify how the search is performed:

 CompanyName

 LegalName

 BusinessNumber

 CompanyNumber

• searchQuery

o The value to search (based on searchBy), e.g., a Company Number.

• results

o A key/ value list that is returned and contains details of the selected row in the Company

Lookup.

• existingDetails

o A key/ value list containing existing, known details. E.g., you might add entries for

"CompanyName" and "CompanyNumber". The Company Lookup form would then display

these along with a checkbox indicating that the User would like to update them (see the

detailsToUpdate parameteer).

• detailsToUpdate

o A key/ value list that is returned and contains details of any items on the form that the

user has indicated that they would like to updated.

The method returns False if an error occurs or sets results to Nothing if the User cancelled

the Company Lookup.

The existingDetails, results and detailsToUpdate key/ value lists accept/ return the

following properties based upon the database country:

Country/ Service Property Type

Australia (ABN Lookup) CompanyName String

CompanyNumber String

BusinessNumber String

LegalName String

New Zealand (Companies

Office)

CompanyName String

CompanyNumber String

Page 99 of 141

CommencementDate Date

BusinessNumber String

LegalName String

NOTE: The method, finBL.CreditBureau.CanPerformCompanyLookup() can be checked to

determine whether company lookup functionality is available. This can be used to show/ hide

lookup buttons.

Page 100 of 141

Credit Enquiry Wizard

This form shows the Credit Enquiry wizard pseudo-modal to the Page Set form for either a

Client or an Account Application Applicant.

Public Sub cmdEnquiry_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdEnquiry.Click

 If Not psh.FormShowClientCreditEnquiry(mClient) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowClientCreditEnquiry and

FormShowAccountAppApplicantCreditEnquiry methods may return an error, e.g., if for some

reason the wizard cannot be displayed.

The FormShowClientCreditEnquiry method has the following parameters:

• client

o A finClient object.

• serviceId

o Optionally, the code of the Credit Enquiry Service to use.

The FormShowAccountAppApplicantCreditEnquiry method has the following parameters:

• accountAppApplicant

o A finAccountAppApplicant object.

• serviceId

o Optionally, the code of the Credit Enquiry Service to use.

The Page Set Script can handle to CreditEnquiryFormClosed event to decide what to do once

the Credit Enquiry wizard has been completed of cancelled by the User, e.g.:

Public Sub PageSet_CreditEnquiryFormClosed(sender As Object,

 e As

finPageSetHandlerCreditEnquiryFormClosedEventArgs) Handles Me.CreditEnquiryFormClosed

 ' Credit Enquiry wizard completed

 If Not e.Cancelled Then

 ' Your code goes here

 End If

End Sub

Page 101 of 141

New Client Wizard

This form shows the New Client wizard pseudo-modal to the Page Set form.

This form would typically be used by a Page Set designed to enter an Account Quotation.

Public Sub cmdAddClient_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdAddClient.Click

 If Not psh.FormShowNewClientWizard() Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowNewClientWizard method may return an error, e.g., if for some reason it

cannot be displayed.

The FormShowNewClientWizard method has the following parameters:

• client

o An optional finClient object.

o If supplied, this should be an unsaved Client.

The Page Set Script can handle to NewClientWizardFormClosed event to decide what to do

once the New Client wizard has been completed of cancelled by the User, e.g.:

Public Sub PageSet_NewClientWizardFormClosed(sender As Object,

 e As

finPageSetHandlerNewClientWizardFormClosedEventArgs) Handles Me.NewClientWizardFormClosed

 ' New Client wizard completed

 If Not e.Cancelled Then

 ' Refresh Client DBCombo (to include new Client)

 cboClient.RefreshDataSource()

 ' Update Fields

 cboClient.Text = e.ClientId

 End If

End Sub

Page 102 of 141

PPSR Search Wizard

This form shows the PPSR Search wizard pseudo-modal to the Page Set form for either a Client

, an Account Application Applicant or an Account Application Collateral Item.

Public Sub cmdEnquiry_Click(sender As Object,

 e As finPageObjectClickEventArgs) Handles cmdEnquiry.Click

 If Not psh.FormShowClientPPSRSearch(mClient) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowClientPPSRSearch,FormShowAccountAppApplicantPPSRSearch and

FormShowAccountAppCollateralItemPPSRSearch methods may return an error, e.g., if for

some reason the wizard cannot be displayed.

The FormShowClientPPSRSearch method has the following parameters:

• client

o A finClient object.

The FormShowAccountAppApplicantPPSRSearch method has the following parameters:

• accountAppApplicant

o A finAccountAppApplicant object.

The FormShowAccountAppCollateralItemPPSRSearch method has the following parameters:

• accountAppCollateralItem

o A finAccountAppCollateralItem object.

The Page Set Script can handle to PPSRSearchFormClosed event to decide what to do once the

Credit Enquiry wizard has been completed of cancelled by the User, e.g.:

Public Sub PageSet_PPSRSearchFormClosed(sender As Object,

 e As finPageSetHandlerPPSRSearchFormClosedEventArgs)

Handles Me.PPSRSearchFormClosed

 ' PPSR Search wizard completed

 If Not e.Cancelled Then

 ' Your code goes here

 End If

End Sub

Page 103 of 141

Security Statement Item

This form allows the viewing or editing of an existing Security Statement Item via the built-in

Security Statement Item form.

NOTE: This form is only available if licensed for the Security Register Add-On.

The following example assumes that the Page Set Script has an mSecurityStmt variable which

is a finSecurityStmt object and also a mSecurityStmtItemNew variable which is a

finSecurityStmtItemBase object. A grid type Page Object is being used to display the

Security Items and this has a drilldown button. The page also has a separate 'Add' button:

Public Sub cmdAdd_Click(sender As Object, e As finPageObjectClickEventArgs) Handles cmdAdd.Click

 ' Create new Item

 mSecurityStmtItemNew = mSecurityStmt.SecurityItems.CreateSecurityStmtItem("MV")

 ' Add to Security Statement

 mSecurityStmt.SecurityItems.Add(mSecurityStmtItemNew)

 ' Edit New Item

 If Not psh.FormShowSecurityStmtItem(mSecurityStmtItemNew, True) Then

 mUI.ErrorMessageShow()

 End If

End Sub

Public Sub gridSecurityItems_RowDrilldown(sender As Object,

 e As finPageObjectRowDrilldownEventArgs) Handles

gridSecurityItems.RowDrilldown

 ' Not Editing a new Item

 mSecurityStmtItemNew = Nothing

 If Not psh.FormShowSecurityStmtItem(mSecurityStmt.SecurityItems(e.ListIndex), True) Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: The FormShowSecurityStmtItem method may return an error, e.g., if not licensed for

the Security Register Add-On.

The FormShowSecurityStmtItem method has the following parameters:

• securityStmtItem

o A finSecurityStmtItemBase object.

• allowEdit

o A Boolean value indicating whether to allow the item to be edited.

When this form is closed, the Page Set can use the 'SecurityStmtItemFormClosed' event. The

following example refreshes a grid of Security Items when the form is closed:

Public Sub PageSet_SecurityStmtItemFormClosed(sender As Object, e As

finPageSetHandlerSecurityStmtItemFormClosedEventArgs) Handles Me.SecurityStmtItemFormClosed

 ' Remove New Item since Cancelled

 If e.Cancelled AndAlso mSecurityStmtItemNew IsNot Nothing Then

 mSecurityStmt.SecurityItems.Remove(mSecurityStmtItemNew)

 End If

 ' Refresh Grid

 If mSecurityStmtItemNew Is Nothing Then

 gridSecurityItems.VirtualDataRefresh(gridSecurityItems.ActiveDataRowIndex)

 Else

gridSecurityItems.VirtualDataRefresh(mSecurityStmt.SecurityItems.IndexOf(mSecurityStmtItemNew))

 End If

 ' Finalise

 mSecurityStmtItemNew = Nothing

Page 104 of 141

End Sub

Page 105 of 141

Running an Action Script
Action Scripts are typically written to be run from record-based forms such as the Accounts

and Clients forms.

An Action Script can however be run from a Page Set using the psh.ExecuteActionScript()

method as per the following example which loads a Client and calls an Action Script that may

update the Client's Name:

Public Sub cmdTest_Click(sender As Object, e As finPageObjectClickEventArgs) Handles cmdTest.Click

 Dim Client As finClient

 Dim Ok As Boolean

 Dim RequiresRefresh As Boolean

 ' Assume Success

 Ok = True

 ' Initialise

 Client = finBL.CreateClient()

 ' Load Client

 Ok = Client.Load("paul")

 If Ok Then

 ' Show Details

 txtName.Text = Client.Name

 ' Execute Script

 Ok = psh.ExecuteActionScript("CCASENAME", "Client", Client, Nothing, RequiresRefresh)

 ' Has Action Script has updated the Target Object

 If Ok AndAlso RequiresRefresh Then

 Ok = Client.Refresh()

 ' Show Updated Details

 If Ok Then

 txtName.Text = Client.Name

 End If

 End If

 End If

 ' Error

 If Not Ok Then

 mUI.ErrorMessageShow()

 End If

End Sub

NOTE: If you don't supply a Script Id, the User will be prompted to select the Action Script to

run based upon the supplied Target Object Type.

Page 106 of 141

Parameters
Parameters can be passed to a Page Set in the following ways:

• By running the Page Set from an Application Shortcut.

o Any parameters specified in the Application Shortcut will be available to the Page Set.

• By opening the Page Set from another Page Set using the psh.FormShowPageSet() method.

o This method includes a parameters argument for passing parameters to the other Page

Set.

• If the Page Set has been opened to create or edit an Account Application.

o In the case of Account Applications, several parameters are passed automatically to the

Page Set. These are details in the Page Sets section of the finPOWER Connect 2

Account Applications document.

Parameters can be accessed by the Page Set Script (typically in the Initialise method), e.g.:

AccountAppPk = psh.Parameters.GetInteger("accountAppPk")

AccountAppTypeId = psh.Parameters.GetString("accountAppTypeId")

Page 107 of 141

Using Group Tags
Each Page Object can define a comma-separate list of Group Tags.

These can then be used to perform bulk operations, e.g., show or hide all Page Objects with a

particular tag and also to affect the enabled, read-only and visible states of Page Objects

without changing the Page Object's properties directly.

The following code assumes that a number of Page Objects have the tag 'CoBorrower'. These

are then made visible/ invisible when a CheckBox named chkCoBorrower is changed:

Public Sub chkCoBorrower_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkCoBorrower.Change

 psh.GroupTagSetVisible("CoBorrower", chkCoBorrower.Value)

End Sub

Group Tag functionality works as follows:

• When the Page Set is first loaded, a collection of Group Tags (psh.GroupTags) is built.

o This collection contains an item for each unique Group Tag defined by Page Objects.

 E.g., if a Page Object defined Group Tags of 'CoBorrower,CoBorrowerPostalAddress',

the collection would contain an item for 'CoBorrower' and another entry for

'CoBorrowerPostalAddress'.

• Each item in the Group Tags collection has the following properties:

o Enabled (True by default)

o ReadOnly (False by default)

o Visible (True by default)

• Group Tags properties can be updated directly in the collection, e.g.:

psh.GroupTags("CoBorrower").Enabled = False

o Typically though, one of the GroupTag methods would be used, e.g.:

psh.GroupTabSetEnabled("CoBorrower", False)

• Each Page Object has the following properties which are used to determine the state of a

Page Object when displaying the Page Set.

o EnabledResolved

 Will return True if the Page Object's Enabled property is True AND ALL of the Enabled

properties for the Group Tags for this Page Object are True.

o ReadOnlyResolved

 Will return True if the Page Object's ReadOnly property is True OR ANY of the

ReadOnly properties for the Group Tags for this Page Object are True.

o VisibleResolved

 Will return True if the Page Object's Visible property is True AND ALL of the Visible

properties for the Group Tags for this Page Object are True.

The following methods update Group Tag states.

• GroupTagSetEnabled(groupTag, enabled)

o Set the Enabled property of the specified tag.

• GroupTagSetReadOnly(groupTag, readOnly)

o Set the ReadOnly property of the specified tag.

• GroupTagSetVisible(groupTag, visible)

o Set the Visible property of the specified tag.

Page 108 of 141

Multiple Tags

If is quite possible for a Page Object to list multiple, comma-separated tags.

If a Page Object does contain multiple tags, it will only be visible, enabled or non-read-only if

ALL of its tags have been set to True.

The following is an example of where multiple tags might be used:

• This Page Set allows entry of co-borrower details but these are only displayed if a CheckBox

named chkCoBorrower is checked.

o All co-borrower Page Objects should have their Group Tags set to 'CoBorrower'.

• Within the co-borrower details, postal address details can be entered but these are only

displayed if a CheckBox named chkCoBorrowerPostalAddress is checked.

o All co-borrower Page Object relating to the postal address should have their group tags

set to 'CoBorrower,CoBorrowerPostalAddress'.

The following code updates the Group Tags and therefore the visibility of the Page Objects as

described above:

Public Sub chkCoBorrower_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles chkCoBorrower.Change

 psh.GroupTagSetVisible("CoBorrower", chkCoBorrower.Value)

End Sub

Public Sub chkCoBorrowerPostalAddress_Change(sender As Object,

 e As finPageObjectChangeEventArgs) Handles

chkCoBorrowerPostalAddress.Change

 psh.GroupTagSetVisible("CoBorrowerPostalAddress", chkCoBorrowerPostalAddress.Value)

End Sub

Page 109 of 141

Other Group Functions

The following Page Set Handler (psh) methods are used to perform bulk updates:

• SetEnabledByGroupTag(groupTag, enabled)

o Set the Enabled property of all Page Objects containing this tag.

• SetReadOnlyByGroupTag(groupTag, readOnly)

o Set the ReadOnly property of all Page Objects containing this tag.

• SetVisibleByGroupTag(groupTag, visible)

o Set the Visible property of all Page Objects containing this tag.

Page 110 of 141

Application Shortcuts
A Page Set can be run from an Application Shortcut, e.g., a shortcut in the Task Pane or a

hyperlink in an HTML Summary Page.

Examples of URL-based Application Shortcuts are:

PageSet?id=MyPageSet

PageSet?id=MyPageSet&pseudoModal=True

PageSet?id=MyPageSet&navigationMethod=TabbedPages&visiblePageCodes=General,Details

PageSet type Application Shortcuts can have the following parameters:

• id

o A String value.

o The code of the Page Set to run.

• visiblePageCodes

o A String value.

o A comma-separated list of Page Ids to display.

o By default, the Page Set will show all Pages.

• navigationMethod

o A String value based on the isefinPageSetNavigationMethod Enum.

o Allows the Form Type (known internally as the Navigation Method) to be overridden, e.g.,

to display a 'Wizard' form as 'Tabbed Pages'.

o Can be one of the following:

 SinglePage

 TabbedPages

 Wizard

• modal

o A Boolean value.

o Forces the Page Set to be displayed as a modal form.

o The Page Set can access the parent form via the 'ParentForm' parameter which will either

be Nothing or an ISFormBaseBL object.

• pseudoModal

o A Boolean value.

o Forces the Page Set to be displayed as a pseudo-modal form, i.e., modal to its parent

form only.

o The Page Set can access the parent form via the 'ParentForm' parameter which will either

be Nothing or an ISFormBaseBL object (see the next section).

• parentForm

o An Object value.

o Can be used to pass across the parent form in certain situations, e.g., from an Action-

type Script (see the next section).

NOTE: Any other parameters specified in the Application Shortcut will be available to the Page

Set Script via psh.Parameters.

Page 111 of 141

Accessing the Parent Form
When a Page Set is launched from an Application Shortcut within another Page Set that uses

either the modal or pseudoModal parameter, the Page Set can access the Parent Form as per

the following example:

Dim ParentForm As ISFormBaseBL

' Get Parent Form

ParentForm = DirectCast(psh.Parameters.GetObject("ParentForm"), ISFormBaseBL)

' Refresh Parent Form (e.g., to reload Client record)

If ParentForm Is Nothing Then

 mUI.MsgBox("No parent form to refresh.", MsgBoxStyle.Exclamation)

Else

 ParentForm.Refresh()

End If

The ISFormBaseBL object has the following properties and methods:

• FieldsLoad method

o Reload information from the form's Source object into the User Interface fields. This is

useful if the Page Set has updated (but not saved) the 'Source' object.

• FormKey property

• FormRecordMode property

o The Record Mode of the form, e.g., if the Clients form has a record loaded but is not in

edit mode, this will be 'Loaded'

o NOTE: For forms that do not support changing of records, e.g., the New Account wizard,

this will always return 'Loaded'. Also, for Page Sets, many properties of the ScriptInfo

object such as FormKey and FormRecordMode are not applicable and will just return

default values.

• Refresh method

o Causes the form to refresh, e.g., in the case of a record-based form such as the Clients

form, this will cause the Client record to be reloaded.

o This is useful if the Page Set has update and saved the underlying record.

• Source property

o This is the source object for the form, e.g., a finClient object for the Clients form.

o NOTE: Only a few forms currently expose a source object, therefore this property may

by Nothing.

o The following forms expose this:

 Accounts form (finAccount object)

 New Account wizard (finAccount object)

 Clients form (finClient object)

 New Client wizard (finClient object)

 Security Statements form (finSecurityStmt object)

Action Scripts

Generally, the parentForm parameter is supplied automatically with the Application Shortcut

but in the case of Action-type Scripts, it is possible to supply the parent form, e.g., the

Accounts or Clients form from which the Application Shortcut is being run via a special

ParentForm property that is available to the Action Script, e.g.:

Dim ParentForm As ISFormBaseBL

' Get Parent Form

ParentForm = ScriptInfo.Properties.GetObject("ParentForm")

Page 112 of 141

' Execute Application Shortcut

Main = finBL.ExecuteApplicationShortcut(ApplicationShortcut, Nothing, Nothing, ParentForm)

Page 113 of 141

Appendix A – Guidelines

Page 114 of 141

Layout Guidelines
By following the style guidelines outlined in this section, a Page Set will look and act more like

a built-in finPOWER Connect form.

General

Within finPOWER Connect, all forms work on a grid size of 4x4 pixels. This means:

• All Page Objects should have left/ right and top/ bottom padding that is a multiple of 4.

• Unless the Page Object's width and height are set to size automatically, they too should be

a multiple of 4.

• If specifying a Caption Width (i.e., not using an automatically calculated Caption Width),

this should be a multiple of 4.

• For Page Objects that support a 'TextBox Width', e.g., DBComboBoxes, ensure that this is a

multiple of 4.

• Use 'Size to fill empty space on Page' to automatically expand Grids, HTML Panels and, if

necessary, multi-line TextBoxes.

NOTE: You can view the actual sizes of the Page Objects by hovering over them in the Page

Designer.

Page Object Widths

Use the following guidelines as a reference.

NOTE: Built-in buttons such as spin and dropdown (E.g., on a DBComboBox) are 16 pixels

wide. Other buttons that appear after the Page Object are 20 pixels wide.

Type Width Notes

5 Char Code

• With spin

• With spin + dropdown

60

76

92

Short codes such as Branch Id.

10 Char Code

• With spin

• With spin + dropdown

100

116

132

General codes such as Account Id, Client

Id etc.

20 Char Code

• With spin

• With spin + dropdown

180

196

212

Long codes such as User Id.

Date

• With spin + dropdown

68

96

Read-only dates need not include spin

and dropdown buttons unless it is more

visually appealing.

NOTE: Auto-sizing a DateBox's width will

automatically use these values.

TextBox or ComboBox

8 x MaxLength As a general rule, use this formula when

creating or resizing a Page Object.

Button 80 Wider buttons are used on occasion, e.g.,

on Global Settings.

Page 115 of 141

Page Object Spacing

The following Page Object spacing rules should be used to achieve the same look as built-in

finPOWER Connect forms.

Page Objects Notes

Heading 1

• Padding Top: 0

• Padding Left: 0

• Padding Bottom: 4

Padding for a section heading label

to the next Page Object is 4 pixels.

TextBox 1, TextBox 2

• Padding Top: 0

• Padding Left: 8

• Padding Bottom: 4

Page Objects within a section are

left indented by 8 pixels.

Padding of 4 pixels is used between

Page Objects such as TextBoxes.

Heading 2

• Padding Top: 8

• Padding Left: 0

• Padding Bottom: 0

A gap of 12 pixels is used between

a TextBox type Page Object and the

following section label. Since

TextBox 2 has a bottom padding of

4 and Heading 2 a top padding of 8,

this adds up to 12 pixels.

Spacing between a section label and

a Checkbox (or Grid or HTML Panel)

is 4 pixels less than other Page

Object Types hence a bottom

padding of 0.

Checkbox 1, Checkbox 2

• Padding Top: 0

• Padding Left: 0

• Padding Bottom: 0

Checkboxes are spaced vertically

with a gap of 4 pixels less than

TextBox type Page Objects hence

Checkbox 1 has a bottom padding

of 0.

Checkbox 4

• Padding Left: 4

Page 116 of 141

If a Checkbox appear after a

TextBox type Page Object, the

horizontal gap should be 4 pixels.

Text Formatting and Other Guidelines
Text, e.g., section headings and captions are formatted to certain guidelines within finPOWER

Connect. By following the guidelines in this section, a Page Set will look and act more like a

built-in finPOWER Connect form.

General

The following is a screenshot of the Page Sets, Options page.

The following points should be taken into account when designing your own pages:

• Section headings, e.g., 'Minimum Form size.'

o Use a Label with a style of 'Heading 4'.

o Always end in a punctuation mark, generally a full stop.

o Display an 'i' icon after their text is assigned a tooltip.

 NOTE: Only 'Heading 4' style Labels do this and the icon will only be displayed when

the Page Set is run, not in the Page Designer.

• Page Object captions should always end in a colon.

o E.g., 'Form Type:'.

o The exceptions are CheckBoxes.

• Use the 'Hint' property to provide a blank tip where a default applies.

o E.g., the 'Form Title' above has a blank tip of 'Button Strip Page Set' to indicate that if

this Page Object is left blank, this will be used as a default.

• Indent Page Objects that are directly related to the value of another Page Object.

o E.g., the 'Caption' Page Objects beneath the CheckBoxes.

 These are typically indented by 20 pixels.

• Disable Page Objects that are not applicable (set Enabled = False).

o E.g., The 'Show Finish button' CheckBox is disabled if the 'Form Type' is set to 'Wizard'

since Wizards always show a 'Finish' button.

• Use question marks for CheckBox captions if the caption is phrased as a question.

Page 117 of 141

o E.g. 'Show Print button?'.

Wizards

The following is a screenshot of the Credit Enquiry wizard.

The following points should be taken into account when designing your own wizards:

• The Form Heading area displays the Page's Title and Summary.

o The Title should generally be a very brief identifier for the wizard stage.

o The Summary text should describe what the User is expected to do on this page.

• Section headings are generally phrased as instructions.

o E.g., 'Select the Credit Bureau Service to use.'

• Typically, you would use the 'WizardValidate' event to perform any extra validation and

prevent movement to the next page.

o In the case of the Credit Enquiry wizard, the equivalent of the 'WizardValidate' event also

loads details from the select Client that are used on the second page of the wizard. That

way, if this process fails, the User cannot move past the first page.

 In other situations, it may make more sense to use the 'WizardRefresh' event to load

this data.

Page 118 of 141

Appendix B – FormShow Application Shortcuts

Page 119 of 141

Overview
Most forms within finPOWER Connect can be opened from an Application Shortcut.

Dragging the Form Heading area of a form to the Task Panel will create a 'FormShow'

Application Shortcut providing the form supports being opened from an Application Shortcut.

Record-based forms, e.g., Documents, Branches, Accounts, Clients will create an application

shortcut with the following parameters:

• form

o The form's 'Form Key' which is how finPOWER Connect forms are identified.

• id

o Optional. The Id of the record to load, e.g., a Client Id.

• page

o Optional. The caption of the page to show on the form.

o This can include a wildcard character on the end which is useful for pages such as the

Logs page of the Clients form which shows a count of unactioned logs after the caption.

Dragging the Clients form to the Task Pane with Client C1000 loaded and displaying the Logs

page will create the following Application Shortcut:

FormShow?form=Clients&id=C10000&page=Logs%2A

NOTE: In this example, the '%2A' on the end of 'Logs' is a URL encoded wildcard character

(*).

There are a couple of ways of executing an Application Shortcut from Script code, executing a

pre-formed URL, e.g.:

' NOTE: All parameters must be URL-encoded, e.g., using finBL.Runtime.HtmlUtilities.UrlEncode

finBL.ExecuteApplicationShortcutUrl("FormShow?form=Clients&id=C10000&page=Logs%2A")

Or using the ISApplicationShortcut object, e.g.:

' NOTE: Parameters are automatically URL-encoded

Dim ApplicationShortcut As ISApplicationShortcut

ApplicationShortcut = finBL.CreateApplicationShortcut()

With ApplicationShortcut

 .Action = "FormShow"

 With .Parameters

 .SetString("form", "Clients")

 .SetString("id", "C10000")

 .SetString("page", "Logs*")

 End With

End With

finBL.ExecuteApplicationShortcut(ApplicationShortcut)

URL-style Application Shortcuts can be embedded in HTML summary pages, e.g.:

Show Client

The main advantages that using the ISApplicationShortcut object has over forming a URL

directly are:

• All parameters are automatically escaped.

• Object type parameters can be included.

o Some forms support Application Shortcut parameters that include Object, i.e., i.e., values

that cannot be represented in a URL String.

Page 120 of 141

NOTE: The ISApplicationShortcut.ToUrlString() method that returns a URL String,

optionally including the 'app://' prefix.

Many forms within finPOWER Connect can accept other parameters and these are detailed in

the following sections (these will be built on over time).

Non-standard parameters that are likely to be of interest are bolded.

Page 121 of 141

Execute Documents wizard
This is the form that is displayed to send a document to a range of Accounts, Clients etc via

the Documents section in the Report Explorer.

Depending on which type of document you want to send, the Form Key (and the title) will vary

between:

• DocumentsAccount

o Account Documents

• DocumentsClient

o Client Documents

• DocumentsSecurityStatement

o Security Statement Documents

• DocumentsUser

o User Documents

Application Shortcuts to show these types of form accept the following parameters:

• form

o One of the Form Keys listed above.

• id

o The Id of the Document to execute.

o If supplied the first page of the wizard will be skipped.

• settingsUserDataPk

o The primary key of the saved settings to load.

• primaryRange

o A value for the primary range parameter, e.g., for Client documents, this should be a

range of Client Ids, e.g., 'C10000,C10001'.

• fileType

o Causes only Documents of the specified File Type to be listed in the Document dropdown.

 Valid values are as per the iseDocumentFileType Enum:

• Email

• ExcelVba

• Html

• Log

• Script

• Sms

• WordVba

A sample Application Shortcut URL is:

FormShow?form=DocumentsClient&primaryRange=C10000%2CC10001&fileType=Email

Page 122 of 141

Appendix C – Samples
All samples in this section are designed to work with the finPOWER Connect demonstration

databases.

Page 123 of 141

Client Marketing Wizard (SMPL.CMK)
This presents a wizard into which criteria are entered and a grid of matching Clients is built.

The Page Set functions as follows:

• The User enters marketing criteria, e.g., the age range of Clients to list.

• Upon clicking the Next > button, a grid of matched Clients is displayed.

• All rows in the grid are 'Selected' by default but the User can unselect each row or use the

buttons below the grid to select/ unselect ranges of Clients.

• The User can then use the buttons below the grid to send an Email, SMS or MS Word

document to the selected Clients or, an 'Export' button to create a CSV file which could then

be used for performing Mail Merges.

The main points this sample demonstrates are:

• A multi-page wizard type Page Set.

o NOTE: Neither the WizardValidate or WizardMove events are used by this sample.

• Showing and hiding Page Objects based on licence settings.

o Marketing flags differ based on whether the Advanced Clients Add-On is licensed.

o The ability to send an SMS Document is only given if licensed for the SMS Add-On.

• Range Lookups.

o Based on standard ranges, e.g., 'Client Types'.

o Based on a database query, e.g., 'Cities' and 'Suburbs'.

• Creating and using a custom collection.

o A collection (Generic List) of Marketing Clients is created and bound to the grid.

• Grids.

o A drilldown column to open the Clients form.

o A 'Selected' column that allows items in the grid to be checked as 'Selected'.

o Grid buttons, including buttons to select rows and check/ uncheck the selected rows.

• Using the finBL.StatusXXX() methods to display a progress window.

• Using Application Shortcuts to show another form.

o When sending Email, SMS or an MS Word Document, the range of selected Clients is

passed across to the Document Execute wizard.

Page 124 of 141

Pages

This Page Set consists of 2 pages:

• FILTERS

o Entry of filter criteria.

• CLIENTS

o A grid of Clients matching the filter criteria.

o An HTML summary of the active grid row.

o Both the Grid and the HTML Panel have their height configured to 'Size to fill empty

space on Page'.

Page 125 of 141

Functionality

When the Page Set is first run:

• Initialise event

o Configures the grid (gridClients).

o Creates a collection to bind to the grid (mMarketingClients).

o Hides Page Objects not licensed.

o Calls the Form_Reset() method.

• Form_Reset method

o Sets Page Object defaults.

o Clears the mLastRefreshSql variable (used to avoid re-querying the database

unnecessarily).

When the User clicks the Next > button after entering details on the FILTERS page:

• PageSet_WizardRefresh event

o Calls the gridClients_Refresh() method.

• gridClients_Refresh method

o Uses an ISSelectQueryBuilder to create an SQL SELECT query based on the parameters

entered on the FILTERS page.

o Compares the SQL to the mLastRefreshSql variable and, if they are different:

 Records the SQL in mLastRefreshSql.

 Displays a progress window using the finBL.StatusProgressBegin() method.

 Queries the database using sqb.ExecuteDataTable() so that the count of results can be

accessed.

 Iterates the results, adding an entry to the mMarketingClients collection if

necessary.

• Deceased Individuals are excluded. This could have been done in the SQL but is

performed here as an example of post-processing the Clients before adding them to

the collection.

• The constructor of the MarketingClient class extracts details such as the current

address and phone number from the supplied finClient object as sets properties

on the class.

 Updates the progress window using finBL.StatusProcess() method.

• If the User has cancelled the process by clicking the 'Cancel' button in the progress

window, the loop is exited.

 Once the loop has finished, the finBL.StatusProcessEnd() method is called to close

the progress window.

o The Grid is refreshed passing in a value of zero to activate the first row.

o Calls the htmlPreview_Preview() method to view a summary of the Client.

• htmlPreview_Preview method

o Uses the built-in Client summary page to preview the active row in the grid.

 The finClient object for the active row is passed to the

finBL.ScriptFunctions.BuiltInClientGeneralSummaryScript2() method to

generate the HTML.

The User then interacts with the grid (gridClients):

• gridClients_InitialiseRow event

Page 126 of 141

o This is called automatically by the Page Set for each item in the mMarketingClients

collection when the grid is refreshed using the gridClients.VirtualDataRefresh()

method.

o Sets the display values for each grid cell.

 Formats the address so that it is a single line address by replacing new line characters

with commas.

• gridClients_AfterRowActivate event

o Calls the htmlPreview_Preview() method to view a summary of the Client for the new

active grid row.

o Calls the gridClients_ButtonsUpdate() method to update the states of the buttons

below the grid.

• gridClients_ButtonsUpdate method

o Updates the states of the grid buttons, e.g., the Check/ Uncheck buttons are only

enabled if one or more grid rows are selected.

• gridClients_BeforeCellUpdate event

o The 'Selected' column is the only non-read-only column in the grid so this event will only

fire when the User checks or unchecks the checkbox in this column.

o The Selected property of the active item in the mMarketingClients collection is

updated.

o The Page Set then automatically calls the gridClients_InitialiseRow event for the row

that has been updated.

• gridClients_RowDrilldown event

o When the User clicks a drilldown button in the grid, this method executes an Application

Shortcut URL to display the Clients form.

• gridClients_ButtonClick event

o Handles clicking the buttons below the grid.

 Check and Uncheck buttons

• A list of selected rows is retrieved using the

gridClients.GetSelectedRowIndexes() method and each corresponding entry in

the mMarketingClients collection has its Selected property updated.

• The grid is refreshed, passing in -2 to preserve the active row and a value of True

to preserve the selected rows.

 DocumentWordVba, Email and SMS buttons

• Builds a CSV list of Client Ids for each selected item in the mMarketingClients

collection.

o Items are excluded if there is no relevant value, e.g., no Email address when

clicking the Email button.

• Uses an application shortcut to show the Document Execute wizard (Client

Documents). The primaryRange is specified as the range of Client Ids and the

fileType is restricted, e.g., so the wizard will only allow selection of Email type

Documents:

' Show Documents Execute form

ApplicationShortcut = finBL.CreateApplicationShortcut()

With ApplicationShortcut

 .Action = "FormShow"

 With .Parameters

 .SetString("form", "DocumentsClient")

 .SetString("primaryRange", List.ToCsvString())

 .SetString("fileType", iseDocumentFileType.Email.ToString())

 End With

End With

Page 127 of 141

finBL.ExecuteApplicationShortcut(ApplicationShortcut)

 ExportCsv button

• Prompts the User to enter a file name and then generates a CSV file.

o The ToCsvString() method of MarketingClient is used to create a line. This

uses the ISList object which ensures that all items are escaped and quoted

correctly.

o A default file name based on the current date and time and located in the User's

Data Export folder is created.

 Refresh button

• Clears the mLastRefreshSql variable and calls the gridClients_Refresh()

method to rebuild the grid.

 SelectAll, SelectNone, SelectUp and SelectDown buttons

• Use methods of the grid to change the selected rows.

IMPORTANT: When creating a SELECT query, it is important to respect User filters.

The method gridClients_Refresh() does this using the line:

 .Append(finBL.CurrentUserInformation.FilterClientSqlWhere)

Similar filters exist for Accounts, Security Statements and Account Applications:

 finBL.CurrentUserInformation.FilterAccountSqlWhere

 finBL.CurrentUserInformation.FilterAccountAppSqlWhere

 finBL.CurrentUserInformation.FilterSecurityStmtSqlWhere

Range Lookups

Several Range Lookups are shown on the FILTER page. These are simply TextBox type Page

Objects with a 'Find' button. The ButtonClick event is used to display a Range Lookup form.

Many Range Lookups are based on standard finPOWER Connect ranges and are displayed as

follows:

Public Sub txtRangeClientTypes_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

txtRangeClientTypes.ButtonClick

 psh.FormShowRangeLookupFromStandardRange(txtRangeClientTypes, isefinStandardRange.ClientTypes,

"")

End Sub

NOTE: The Client lookup (txtClients) has an extra True parameter at the end to force a proper

Range Lookup form rather than the Client Search or Client List forms being displayed (based

on User Preferences).

The Cities and Suburbs Range Lookups perform database queries. The Suburbs Range Lookup

filters its list based on what is entered in the Cities lookup:

Public Sub txtRangeCities_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

txtRangeCities.ButtonClick

 Dim dt As DataTable

 Dim sqb As ISSelectQueryBuilder

 ' Build Query

Page 128 of 141

 sqb = finBL.Database.CreateSelectQueryBuilder()

 With sqb

 .Table = "ClientContactAddress"

 .DistinctType = iseSelectQueryDistinctType.Distinct

 .Fields.Add("City")

 .SqlWhere.AppendComparisonNotNull("City")

 .OrderByFields.Add("City")

 End With

 ' Execute

 If sqb.ExecuteDataTable(dt) Then

 psh.FormShowRangeLookupFromDataView(txtRangeCities, dt.DefaultView, "City", "Cities")

 Else

 mUI.ErrorMessageShow()

 End If

End Sub

Public Sub txtRangeSuburbs_ButtonClick(sender As Object,

 e As finPageObjectButtonClickEventArgs) Handles

txtRangeSuburbs.ButtonClick

 Dim dt As DataTable

 Dim sqb As ISSelectQueryBuilder

 ' Build Query

 sqb = finBL.Database.CreateSelectQueryBuilder()

 With sqb

 .Table = "ClientContactAddress"

 .DistinctType = iseSelectQueryDistinctType.Distinct

 .Fields.AddList("Suburb,City")

 With .SqlWhere

 .AppendComparisonNotNull("Suburb")

 ' Restrict to City range

 If Len(txtRangeCities.Text) <> 0 Then

 .AppendRange("City", txtRangeCities.Text)

 End If

 End With

 .OrderByFields.Add("Suburb")

 End With

 ' Execute

 If sqb.ExecuteDataTable(dt) Then

 psh.FormShowRangeLookupFromDataView(txtRangeSuburbs, dt.DefaultView, "Suburb", "Suburbs")

 Else

 mUI.ErrorMessageShow()

 End If

End Sub

Page 129 of 141

Add or Edit Client Form(SMPL.CLI)
This presents a single page form from which an existing 'Individual' type Client can be selected

and edited or a new Client added.

This Page Set defines a number of Script constants to configure codes for Contact Methods and

the Client Group and Client Type for new Clients.

The Page Set functions as follows:

• The User selects an existing Client using a DBComboBox (without a dropdown but with a

search box) at the top of the page and pressing 'Enter' or clicking the 'Load Client' button.

o Or, adds a new Client using the 'Add New Client' button.

• Client details can then be updated.

• The Save button can is used to update the Client record or the Cancel Edit button to

cancel editing.

The main points this sample demonstrates are:

• A Single Page type Page Set.

• Using 'Quick Search' to locate a Client record.

• Enabling and Disabling Page Objects based on their Group Tags.

• Updating Command Buttons.

o The captions on the OK and Cancel buttons are varied depending on whether a record is

currently being edited.

Page 130 of 141

Pages

This Page Set has a single Page.

• CLIENT

o Entry of Client details.

o The majority of this Page is occupied by a data entry form.

o To make it easy to enable and disable this form, each of the Page Objects from the 'Enter

Client details.' label down has a Group Tag of 'Client'.

Page 131 of 141

Functionality

When the Page Set is first run:

• Initialise event

o Picks up constants.

o Creates an mClient object.

o Adds buttons to the Client DBComboBox (cboLoadClient).

o Calls the Form_Reset() method.

• Form_Reset method

o Sets the mEditing flag to False and clears the cboLoadClient DBComboBox.

o Calls the Record_Load() method to clear the form.

o Focuses the cboLoadClient DBComboBox.

• Record_Load method

o This method is called to load an existing Client or start editing a new Client record.

o Loads or Clears the mClient object.

o Validates that the loaded Client is an individual Client.

o Calls the Fields_Load() method to populate the Page Objects from the mClient object.

o Sets the mEditing flag and, based on this:

 Enables or Disables Page Objects based on the 'Client' Group Tag.

 Updates the captions on the Command buttons.

 Sets focus.

• Fields_Load method

o Populates Page Objects with general Client details (i.e., those that do not come from the

ContactMethods collection).

o Locates Email, Phone and Mobile Contact Methods.

 Stores these in module-level variables.

 Populates Page Objects with their values.

When the User loads an existing Client by entering a code in the Client DBComboBox and

pressing Enter (or clicking the 'Load Client' button):

• cboLoadClient_ButtonClick event

o Validates that a value is entered in cboLoadClient and beeps and focuses if not.

o Calls the Record_Load(False) method to load an existing Client.

When the User adds a new Client using the 'Add New Client' button:

• cmdAddNew_Click event

o Calls the Record_Load(True) method to load a new Client.

When the User has finished updating Client details and clicks the Save button:

• PageSet_CommandButtonClick event

o Handles the isefinPageSetCommandButton.Ok button since this is actually the Save

button.

o Prevents the form from closing (the default action for both the Cancel and OK buttons)

by setting e.Cancel = True.

o Calls the Record_Save() method.

Page 132 of 141

• Record_Save method

o Calls the Fields_Save() method to update the mClient object.

o If this is a new Client:

 Sets the Client Group and Client Type.

o Saves the Client record.

o Displays a message to notify the User that the record has been updated.

o Refreshes the cboLoadClient DBComboBox so that the new or updated Client appears in

the list.

o Resets the form by calling the Form_Reset() method.

• Fields_Save method

o Populates general Client details from Page Objects (i.e., those that do not come from the

ContactMethods collection).

o Clears out any unsaved Contact Methods since these are recreated with each call to

Fields_Save().

o Calls the Fields_Save_ContactMethod() method for each of the Email, Phone and

Mobile Contact Methods.

• Fields_Save_ContactMethod method

o This handles adding a new or updating an existing Client Contact Method.

o If the passed in Client Contact Method is Nothing then this means that no Contact

Method was found in Fields_Load().

 A new Client Contact Method is created (providing a value is specified).

 This is inserted at the beginning of the ClientContactMethods collection since it

makes sense for newer items to appear at the top of the list.

o If the passed in Client Contact Method is not Nothing then an existing Contact Method is

being updated:

 If the passed in value is blank, then the User has cleared this Contact Method,

therefore it is set as no longer current:

• The DateStop property is set to yesterday's date.

o This is necessary since this date is inclusive, therefore, setting it to today's date

would indicate that the Contact Method is still current.

o An alternative to this would be to set DateStop to today's date and set the

Historic property to True.

 If the passed in value is not blank, the Contact Method is updated and the DateStop

property cleared to indicate that this Contact Method is current.

WARNING: The finClientContactMethods.GetCurrentMobile() and related methods are

NOT used since they only returns contact methods that appear valid, e.g., if you enter a text

value as a mobile phone number (such as 'N/A') and then used the above method, it will not

return that Contact Method since it knows that mobile phone numbers must be numeric.

Page 133 of 141

Custom Account Payment Wizard (SMPL.AP)
This presents a single-page wizard into which an Account Payment can be entered.

The Page Set functions as follows:

• The User selects an Account.

• The User enters Payment details and views a summary of how the Account will look once

the Payment has been made.

• Upon clicking the Finish button, an Account Payment is made.

The main points this sample demonstrates are:

• A single-page wizard type Page Set.

o NOTE: The WizardValidate event is used for demonstration purposes. This is only

available to wizard type Page Sets.

• Maximum and minimum values on a Page Object.

o The Payment NumberBox has these configured.

• Using a built-in Summary Page Script to display an HTML summary of the Payment.

• Using the Account Payment Details Page Object.

Page 134 of 141

Pages

This Page Set has a single Page even though it is configured to be a wizard (since it

demonstrates the PageSet_WizardValidate event).

• PAYMENT

o Entry of Account Payment details.

o This contains an Account Payment Details Page Object.

 NOTE: A current limitation of this Page Object type is that it hard-codes it's Caption

Width to 80. Therefore, all other Page Objects have their Caption Width set to 80 so

they visually line up correctly.

Page 135 of 141

Functionality

When the Page Set is first run:

• Initialise event

o Picks up constants.

o Creates an mAccountPayment object.

o If the User's performance settings indicate that Account DBComboBoxes should not

display a dropdown (thereby avoid a potentially large database read):

 Sets cboAccount to use 'Fast Mode' which means that it will not show a dropdown list.

 Reduces the width of cboAccount by 32 to account for it no longer displaying

dropdown or spin buttons (each of which has a width of 16).

o Calls the Form_Reset() method.

• Form_Reset method

o Sets Page Object defaults.

o Manually calls the cboAccount_Change() event

o Sets focus.

• cboAccount_Change event

o Either clears of loads the mAccountPayment object.

o Updates the Payment details from those stored on the Account.

o Calls the htmlAccountSummary_Preview() method to update the Account Payment

preview.

• htmlAccountSummary_Preview method

o Calls the Fields_Save() method to update the properties of the mAccountPayment

object.

o Uses the build in Account Payment Summary Script to produce an HTML Summary Page

which is then used to update the htmlAccountSummary HTML Panel.

• Fields_Save method

o Updates the properties of the mAccountPayment object from the corresponding Page

Objects.

As the User enters data:

• dateDate_Change, numPayment_Change, pdaPaymentDetails_Change events

o Calls the htmlAccountSummary_Preview() method to update the Account Payment

preview.

When the User clicks the Finish button:

• PageSet_WizardValidate event

o Since this is a wizard type Page, this event is called before the

PageSet_CommandButtonClick event.

o Validates that the Payment date is not in the future.

 If it is, the User is alerted and e.Failed set to True to prevent this page from

validating and therefore preventing the PageSet_CommandButtonClick event from

firing.

• PageSet_CommandButtonClick event

o Handles the isefinPageSetCommandButton.Finish button.

o Prevents the form from closing (the default action for both the Cancel and Finish

buttons) by setting e.Cancel = True.

Page 136 of 141

o Calls the Fields_Save() method.

o Uses a message box to confirm that the User would like to make the Payment.

o Calls the ExecuteCommit() method of mAccountPayment to make a Payment.

o Notifies the User that the Payment was successfully made.

o Calls the Form_Reset() method to clear the wizard ready to make another Payment.

Page 137 of 141

Simple Loan Quote Form (SMPL.LQ)
This presents a single page form from which allows a 'Quote' Account and, optionally, a new

Client record to be created.

This Page Set defines a number of Script constants to configure codes for Contact Methods,

Account Roles and Account Type.

The Page Set functions as follows:

• Displays a mainly disabled data-entry from.

o Form is not enabled until all 'Eligibility' criteria are checked.

• Loan details can be entered and a preview of the repayment value is displayed.

• An existing Client can be selected or, optionally, details of a new Client entered.

• Upon clicking the 'Add Quote' button, a new Account is created and also a new Client if

necessary.

The main points this sample demonstrates are:

• A Single Page type Page Set.

• Using Group Tags to enable/ disable and show/ hide Page Objects.

o The main data-entry fields are disabled until all eligibility CheckBoxes are checked.

o Client Page Objects are hidden unless the 'Existing Client?' CheckBox is unchecked.

• The Payment calculation will occur automatically if User Preferences, Account, General,

'Automatically recalculate Account Financial figures' option is checked.

o This can be overridden by the 'ForceAutoCalculate' constant.

• Addressing functionality.

o A 'Find' button next to the 'Address' TextBox demonstrates the Address Lookup form.

o The 'City' ComboBox presents a list of cities.

o The 'Suburb' ComboBox lists suburbs for the selected city.

o The 'Postcode' ComboBox lists postcodes for the selected suburb.

Page 138 of 141

Pages

This Page Set has a single Page.

• MAIN

o Quote capture page.

o All Page Objects are disabled until both 'Eligibility' CheckBoxes are checked.

 To achieve this, all other Page Objects include a Group Tag of either 'Loan' or 'Client'.

o If 'Existing Client?' is checked, all Page Objects apart from the Client DBComboBox are

hidden.

 To achieve this, the Client DBComboBox includes a Group Tag of 'ClientExisting' and

all other Client Page Objects, a Group Tag of 'ClientNew'.

o The Address ComboBoxes all handle their Change events and update their lists on-the-

fly.

 The Suburb list is built based on the selected City.

 The Postcode list is built based on the selected Suburb.

Page 139 of 141

Functionality

When the Page Set is first run:

• Initialise event

o Picks up constants.

o Validates constants.

 NOTE: Only validates whether they exist, not whether they are correct, e.g., you

could enter a Phone Number type Contact Method for the Address.

o Creates mAccount and mClient objects.

o Calls the Form_Reset() method.

• Form_Reset method

o Sets defaults for Page Objects that are not loaded from mAccount or mClient, e.g., the

eligibility CheckBoxes.

o Clears mAccount and mClient.

o Calls the Fields_Load() method.

o Calls various Change events and Refresh methods.

 This ensures that all Page Objects are enabled/ disabled and shown/ hidden based on

the defaults set at the top of this method.

 The 'Refresh' methods, e.g., cboClientAddressCity_Refresh()ensure that Address

Page Objects load their default lists.

o Clears the message that appears alongside the 'Calculate' button.

o Sets input focus.

 Also scrolls to the top of the page since this is quite a long Page Set.

• Fields_Load method

o Sets Page Objects from the mAccount object.

 Only sets Purpose since this is defaulted from an information list when the Account is

cleared.

o Sets Financial Page Objects from mAccount.Calculation.

 Calls the Fields_LoadClient() method to populate Client related Page Objects.

• Fields_LoadClient method

o Populates Page Objects related to entry of a new Client.

o This is separated from the Fields_Load() method to make it easy for the sample to be

enhanced to pre-load details from an existing Client.

When the User has checked both 'Eligibility' CheckBoxes:

• chkEligibility_Change event

o Enables the data-entry form using the psh.GroupTagSetEnabled() method.

As the User enters the 'Loan Details' section:

• Financial_Change event

o Handles Change event for all financial-related Page Objects.

o Calls the CalculationInvalidate() method.

o If the Payments have changed, updates the Term since the business layer calculation

may have changed this.

• CalculationInvalidate method

o This method is called whenever any of the financial-related Page Objects is changed.

Page 140 of 141

o Decides whether to automatically perform an Account calculation or whether to just set a

message 'Requires Calculation' to alert the User that they should click the 'Calculate'

button to recalculate.

o Calls the CalculateInternal(False) method if necessary.

• CalculateInternal method

o Performs the Account calculation.

o If no 'Payments' are entered, calculates 3 times:

 Weekly

 Fortnightly

 Monthly

o Calls the CalculationError_Update() method to either display a summary of the

calculation or an error if the calculation failed.

o Optionally, shows an error message dialog.

• CalculationError_Update method

o Updates the label next to the 'Calculate' button (lblLoanCalculationMessage) to show

either an error or a normal message (i.e., a summary of the calculation).

o Changes the LabelStyle property to reflect whether an error is being displayed.

If the User clicks the 'Calculation' button:

• cmdLoanCalculation_Click event

o Ensures a Term has been entered since a calculation cannot occur without this.

o Calls the CalculateInternal(True) method.

 True indicates to show the error dialog if necessary (not something we want to do if

calculating automatically every time one of the financial Page Objects changes).

As the User enters the 'Borrower Details' section, they can either leave the 'Existing Client?'

box unchecked and select an existing Client or, if they uncheck it:

• chkClientExisting_Change event

o Hides the Client DBComboBox and shows all other Client Page Objects using the

psh.GroupTagSetVisible() method.

As the User enters Address details:

• cboAddressCity_Change event

o Calls the cboClientAddressSuburb_Refresh() and

cboClientAddressPostcode_Refresh() methods to rebuild lists based on the selected

City.

• cboAddressSuburb_Change event

o Calls the cboClientAddressPostcode_Refresh() method to rebuild the list of postcodes

selected City and Suburb.

• cboClientAddressSuburb_Refresh method

o Uses the Address Interface (finBL.Addressing) to retrieve a list of suburbs for the

specified City.

• cboClientAddressPostcode_Refresh method

o Uses the Address Interface (finBL.Addressing) to retrieve a list of postcodes valid for

the City and Suburb which are combined into an ISAddressDetails object.

Page 141 of 141

When the User clicks the Save Quote button:

• PageSet_CommandButtonClick event

o Handles the isefinPageSetCommandButton.OK button.

o Prevents the form from closing (the default action for both the Cancel and OK buttons)

by setting e.Cancel = True.

o Calls the Record_Save() method.

• Record_Save method

o Calls the Fields_Save() method to update both the mAccount and mClient objects.

o Updates the Name and Description properties on mAccount using methods of

finAccount to form default values.

o Starts a database transaction.

 Since we are saving (potentially) both a Client and Account record to the database.

o Saves the new Client if necessary.

o If a new Client is being created, updates mAccount.Clients to link to the new Client

(something the Fields_Save() method could not do since no database record existed

until now).

o Saves the Account.

o Commits the database transaction.

o Updates and displays a hyperlink at the top of the page to show the Id of the new

Account.

o Resets the form by calling the Form_Refresh() method.

	finPOWER Connect 3 Page Sets
	Table of Contents
	Disclaimer
	Version History
	Introduction
	Samples
	Styles and Formatting
	Security

	Page Sets Overview
	Page Sets Form
	General
	Options
	Pages
	Script Code
	Constants
	Usage

	Form Types
	Wizard
	WizardMove
	WizardRefresh
	WizardButtonsUpdate
	WizardValidate
	CommandButtonClick

	Tabbed Pages
	Initialise
	Command Buttons
	CommandButtonClick
	CurrentPageChanged

	Single Page
	Inline Tabs

	Pages
	Page Wizard
	Page
	Page Designer

	Page Designer
	Toolbar
	Canvas
	Tab Order Mode

	Page Layout Modes
	Flow
	Flow Layout Properties
	The Layout Rectangle
	Positioning Page Objects on the Same Line
	Aligning with an existing Page Object
	Auto-Sizing Width
	Auto-Sizing Height to Fill Page

	Positioned
	PageResize Event

	Page Objects
	General
	Tooltip
	Field Hint
	Group Tags
	Buttons

	Label
	Label Styles
	Custom Labels
	Events

	TextBox
	ContextMenuListObjectType
	Format
	Events

	ComboBox
	List
	Events

	DBComboBox
	ContextMenuListObjectType
	Data Source
	Events

	NumberBox
	Special Types
	Other Properties
	Events

	DateBox
	Special Types
	Events

	Date Cycle ComboBox
	List
	Events

	DateTimeZone
	Events

	CheckBox
	Option Button Style
	Events

	Button
	Events

	HTML Editor
	Formatting Toolbar
	Hyperlinks
	Events

	HTML Panel
	Printing
	Hiding the Border
	Events

	Grid
	Columns
	Groupings
	Data Binding
	Updating Cell Values
	Row Selection
	Printing
	Saving and Loading Grid Layout
	Other Properties
	Events
	FAQ

	Image
	Image Size Modes
	Updating the Image
	Events

	Button Strip
	Buttons
	Border Style
	Events

	Columns Start
	Column Break
	Account Payment Details
	Showing Account Payment Details
	Reading Account Payment Details
	Events

	Advanced Layouts
	Multi-Column Layouts
	Using Page Objects Kept on the Same Line
	Using Column Page Objects

	Advanced Scripting
	Script Objects
	psh
	mUI
	mReports

	Page Set Events
	PageSetActivate
	ActionNotification

	Showing Another Page Set
	Showing Special Forms
	Account Application Applicant
	Account Application Collateral Item
	Account Financial
	Account Payment Arrangement Add
	Account Schedule
	Account Temp
	Address Search
	Bank Account Enquiry Wizard
	Client Temp
	Company Lookup
	Credit Enquiry Wizard
	New Client Wizard
	PPSR Search Wizard
	Security Statement Item

	Running an Action Script
	Parameters
	Using Group Tags
	Multiple Tags
	Other Group Functions

	Application Shortcuts
	Accessing the Parent Form
	Action Scripts

	Appendix A – Guidelines
	Layout Guidelines
	General
	Page Object Widths
	Page Object Spacing

	Text Formatting and Other Guidelines
	General
	Wizards

	Appendix B – FormShow Application Shortcuts
	Overview
	Execute Documents wizard

	Appendix C – Samples
	Client Marketing Wizard (SMPL.CMK)
	Pages
	Functionality
	Range Lookups

	Add or Edit Client Form(SMPL.CLI)
	Pages
	Functionality

	Custom Account Payment Wizard (SMPL.AP)
	Pages
	Functionality

	Simple Loan Quote Form (SMPL.LQ)
	Pages
	Functionality

