
Documents/Development/finPOWER Connect/Version 3/Web Services/finPOWER Connect 3

Custom Web Services Programming Guide.docx

finPOWER Connect 3
Custom Web Services Programming Guide

Version 3.02

25th May 2020

Page 2 of 58

Table of Contents

Disclaimer.. 4

Version History ... 5

Introduction ... 6

Overview ... 7

Dates .. 8

Returning Dates from Custom Web Services .. 8

JavaScript ... 8

JavaScript Issues ... 8

Parsing JSON Objects .. 8

Serialising to a JSON Object ... 8

Creating a Custom Web Service Script ... 10

Calling the Custom Web Service .. 11

Testing the Custom Web Service .. 12

Debugging the Custom Web Service ... 13

Accepting Parameters ... 14

Controlling the Response .. 16

HTML Response... 16

JSON Response ... 16

Text Response .. 16

XML Response .. 16

PDF Response ... 17

Docx Response ... 17

Accepting Posted Data .. 18

Serialising the Response ... 20

Nullable Types .. 21

Dates .. 23

Enums ... 25

Using Attributes to Tweak Serialisation .. 26

Preventing Properties from Being Serialised .. 27

Serialising Collections .. 29

Deserialising the Request .. 31

Deserialising XML .. 31

Deserialising JSON .. 33

Testing Posted XML ... 34

Enums ... 35

Using Attributes to Tweak Deserialisation ... 36

Deserialising Collections ... 37

Troubleshooting Deserialisation Issues ... 39

Parsing Posted XML Request .. 40

Parsing Posted JSON Request .. 42

Manually Creating JSON Text ... 43

Page 3 of 58

Documents, Emails and SMS Messages .. 45

Important ... 45

Limitations .. 45

Documents .. 46

Script-Type Documents .. 48

Ad-Hoc Documents .. 50

Word Document stored in an Account Log and returned as PDF 51

Word Document returned as PDF .. 53

PDF Document from HTML .. 55

PDF Document from HTML, Base-64 Encoded in Complex Response 56

Appendix A – Guidelines .. 58

Formatting HTML for Generating a PDF Document .. 58

Page 4 of 58

Disclaimer
This document contains information that may be subject to change at any stage.

All code examples are provided "as is".

Copyright Intersoft Systems Ltd, 2020.

Page 5 of 58

Version History
Date Version Name Changes

14/04/2015 1.00 PH Created.

13/07/2015 1.01 PH Added manual JSON creating/ parsing sections.

22/02/2016 3.00 PH Updated for finPOWER Connect version 3.

29/1/2020 3.01 PH Reviewed and updated.

25/05/2020 3.02 PH Reviewed and updated for 3.03.02.

Page 6 of 58

Introduction
This document is intended for software developers who would like to create custom finPOWER

Connect Web Services.

For information on programming non-custom Web Services (and for further reference), see the

finPOWER Connect 3 Web Services Connectivity and Programming Guide document.

For information on installing and configuring the finPOWER Connect Web Services on a Web

Server, see the finPOWER Connect 2 Web Services Installation and Configuration

document.

All code samples are currently limited to Visual Basic (VB.NET).

Page 7 of 58

Overview
Custom Web Services are implemented via finPOWER Connect Scripts.

Although General, Summary Page (version 2) and Web Summary Page type Scripts can all be

used as Custom Web Services, this document focuses mainly on Web Service (Web API)

type Scripts.

NOTE: HTML Widgets allow both User Interface and server-side code to be written and may be

a more suitable solution than custom Web Services.

See the finPOWER Connect 3 HTML Widgets document for more information.

Custom Web Services can be written where either there is no Web Service currently available

to perform a specific task or, a totally custom task is required, e.g., creating a Quote Account

using custom information entered on a Web page (as per the CustomLoanQuote1VB.aspx

sample detailed in the Visual Basic Code Examples section of the finPOWER Connect Web

Services Connectivity and Programming Guide document).

NOTE: Always check with Intersoft Systems before choosing to write a Custom Web Service if

the task you want to perform could be considered standard finPOWER Connect functionality.

Page 8 of 58

Dates
Web Service dates use the ISO 8601 standard regardless of whether the date is passed as part

of a request URL or is included in an XML or JSON response.

Web Services return dates in UTC (Coordinated Universal Time) regardless of how they are

stored within the finPOWER Connect database or displayed in the finPOWER Connect Windows

interface.

WARNING: Any dates provided as parameters to Web Services will be parsed according to the

time zone on the Web Server. Therefore, it is advisable to always provide dates in UTC format.

Dates are covered in detail in the Dates topic of the Web Services API reference. Much of this

is repeated below.

Returning Dates from Custom Web Services
TODO:

JavaScript
In JavaScript, when deserialising a JSON object, dates are treated as strings and are not

automatically converted to dates. This is explained fully in this article by Rick Strahl:

http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-

Dates

JavaScript Issues
Communication with the finPOWER Connect Web Services would typically not come directly

from JavaScript. JavaScript may be used as a method of transferring data to and from a Web

browser to a Web application that then communicates with the finPOWER Connect Web

Services. Either way, this section may still be useful in highlighting issues or potential issues

when using JavaScript dates.

JavaScript stores dates in UTC format and formats these according to the host computer's time

zone when displaying a value.

When attempting to parse an ISO 8601 date string that is not specified as a UTC date, i.e., it

does not end in Z, different browsers may give different results, therefore you may not be able

to reliably use the Date.parse method.

When serialising a date to a JSON string via either the dateObject.toJSON or JSON.stringify

functions, the date will be formatted according to the ISO 8601 specification and will always

result in a UTC date format. For example, serialising a date of birth of 3rd November 1968 will

result in the following:

1968-11-03T00:00:00.000Z

Parsing JSON Objects

Dates returned from Web Services are always returned in UTC format, e.g., a date of birth of

1/1/2001 will be returned as "2001-01-01T00:00:00Z".

This means that time zone issues should not occur when displaying the date from Javascript;

the date (providing no time portion is included) will always be displayed properly, e.g.,

1/1/2001.

Serialising to a JSON Object

Consider a date of birth of 1/1/2001 entered on an HTML page on a computer in New

Zealand.

http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-Dates
http://weblog.west-wind.com/posts/2014/Jan/06/JavaScript-JSON-Date-Parsing-and-real-Dates

Page 9 of 58

If you parse this date normally via JavaSript:

window.alert(new Date("2001/1/1"));

The result is Mon Jan 01 2001 00:00:00 GMT+1300 (New Zealand Daylight Time).

If however, you serialise this date using JSON.stringify:

window.alert(JSON.stringify(new Date("2001/1/1")));

The result is "2000-12-31T11:00:00.000Z".

This is a hugely confusing issue, especially when dealing with specific dates such as a date of

birth.

The first date is formatted with the time zone offset (GMT+1300), the second is formatted as

straight UTC and no time zone, thereby showing the date before.

Both of these dates refer to the same point in time but, it is not the point in time you

want, you want a date that is 13 hours ahead of this!

What you really want is a UTC date that is the current date but contains no time zone

information.

One trick is to append the time zone difference (i.e., add 13 hours) to the date before it is

serialised, e.g.:

// Return a date with a time zone difference appended so the date will always be correct

function GetDateOnly(value) {

 if (value instanceof Date) {

 var sd = value.getDate();

 var sm = value.getMonth() + 1;

 if (sd < 10) sd = "0" + sd;

 if (sm < 10) sm = "0" + sm;

 return new Date(value.getFullYear() + "-" + sm + "-" + sd + "T00:00:00Z")

 }

 else {

 return value;

 }

}

Now, if you do:

window.alert(GetDateExact(new Date("2001/1/1")));

The result is Mon Jan 01 2001 13:00:00 GMT+1300 (New Zealand Daylight Time).

And, if you then serialise this date using JSON.stringify:

window.alert(JSON.stringify(GetDateExact(new Date("2001/1/1"))));

The result is now "2001-01-01T00:00:00.000Z".

Page 10 of 58

Creating a Custom Web Service Script
This section outlines the steps required to create a simple custom Web Service Script.

• Open finPOWER Connect.

• Open the database being used by the Web Services.

• From the Admin menu, select Scripts.

• Click the Add button.

• Give the Script an Code and Description, e.g.:

o Code: TESTWS

 NOTE: By default, the Script's code is the name of the custom Web Service and

should therefore contain only alphanumeric characters (this can be overridden on the

Web page of the Scripts form).

o Description: Custom Web Service Test

• Specify a Script Type of Web Service (Web API).

• On the Script Code page, click the Paste template Script code button.

• Click the Save button to save the Script.

Page 11 of 58

Calling the Custom Web Service
The custom Web Service created above can now be called just like any other Web Service

using the special Custom controller, e.g.:

http://localhost/finPOWERConnectWS2/Api/Custom/TESTWS

In this case, a Script named TESTWS will be called or, if a Script has a Web Service Name of

'TESTWS' defined on the Web page of the Scripts form in finPOWER Connect, this Script will be

called (i.e., the Script's code is used by default but can be overridden by specifying a Web

Service Name).

By default, you must have already authenticated and therefore include the Authorization HTTP

header as detailed in The Authentication Process section of the finPOWER Connect Web

Services Connectivity and Programming Guide document.

WARNING: The Web page of the Scripts form has a checkbox to 'Allow Anonymous access'.

Use this option with extreme caution since it allows your custom Web Service to be called

without having first authenticated.

Page 12 of 58

Testing the Custom Web Service
You can test your custom Web Service from the Test Web Services form in finPOWER

Connect as follows:

• Connect to the Web Services from the Connect page.

• Switch to the Web Services page.

• Select the Custom, ExecuteGet node in the Web Services explorer.

• Enter the Id of your Script, e.g., TESTWS

• Click the Test button.

o You should see a Response of:

• Switch to the Connect page and change the Format to JSON.

• Switch to the Web Services page and click the Test button again.

o You should now see a Response of:

NOTE: Custom Web Services can be called using either the GET or POST HTTP methods via the

ExecuteGet and ExecutePost nodes in the Web Services explorer.

GET-based Web Services receive all of their parameters from the URL; POST-based services

can receive parameters from the URL and also from the 'Posted' RequestText, e.g., the

RequestText might be XML formatted Client information.

Page 13 of 58

Debugging the Custom Web Service
Generally, when writing Script code within finPOWER Connect, the Script can contain

finBL.DebugPrint statements which can then be viewed in either the Debug Window or, if

running via the 'Test' button on the Scripts form, the Debug page.

When a Custom Web Service Script is running however, it is running on a Web Server and not

within the Windows version of finPOWER Connect. Therefore, any finBL.DebugPrint

statements will be ignored.

However, the Script can be configured to send any debug information back with the Web

Service's HTTP Response.

A checkbox on the Web page of the Scripts form allows this feature to be enabled:

When enabled, the Script's HTTP Response will then contain one or more DEBUG headers for

each finBL.DebugPrint encountered whilst the Script was ruinning, e.g.:

HTTP/1.1 400 Bad Request

Pragma: no-cache

WS-User: webadmin

Debug-1: Client failed to load.

Debug-2-0: Failed to load Client 'ABCDEFG'.

Debug-2-1:

Debug-2-2: Record not found.

The following example demonstrates how the above debug information was written:

Client = finBL.CreateClient()

If Not Client.Load("ABCDEFG") Then

 finBL.DebugPrint("Client failed to load.")

 finBL.DebugPrint(finBL.Error.Message(True))

End If

Page 14 of 58

Accepting Parameters
We will now update the custom Web Service to accept parameters.

The Script will be updated to accept a ClientId parameter and will return the Client's name

together with a list of all their aliases (Akas).

Update your custom Web Service Script code to the following:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 Dim Client As finClient

 Dim ClientAka As finClientAka

 Dim ClientDetails As clsClientDetails

 Dim ClientId As String

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Get Parameters

 ClientId = request.Parameters.GetString("ClientId")

 ' Load Client

 Client = finBL.CreateClient()

 If Client.Load(ClientId) Then

 ' Create and update Client Details

 ClientDetails = New clsClientDetails()

 ClientDetails.Name = Client.Name

 ' List AKAs

 For Each ClientAka In Client.Akas

 ClientDetails.Akas.Add(ClientAka.NameFull)

 Next

 Else

 Ok = False

 End If

 ' Response

 If Ok Then

 Return request.CreateResponse(HttpStatusCode.OK, ClientDetails)

 End If

 ' Error

 If Not Ok Then

 Return request.CreateErrorResponse(ErrorStatusCode, "Failed to get Client name details.",

ErrorCode, finBL.Error.Message(True, True))

 End If

End Function

<System.Xml.Serialization.XmlType("ClientDetails")>

Public Class clsClientDetails

 Public Name As String

 Public Akas As New List(Of String)

End Class

We will now test the updated service using the Test Web Service form.

• Select the Custom, Execute (GET) node in the Web Services explorer.

• Enter the Id of your Script, e.g., TESTWS

• In the Parameters field, enter clientId=C10000.

o Parameters must be URL encoded and separated by a '&', e.g., if you had two

parameters, you would specify them as param1=value1¶m2=value2

• Click the Test button.

Page 15 of 58

o You should see a Response similar to:

• Switch to the Connect page and change the Format to JSON.

• Switch to the Web Services page and click the Test button again.

o You should now see a Response similar to:

NOTE: As of version 2.02.01 of finPOWER Connect, Custom Web Service Scripts can define

Parameters which are then used by the Test Web Service form when selecting the Custom,

Execute (Parameters) node in the Web Services explorer.

This provides a more user-friendly way of testing Custom Web Services that use Parameters.

In the above example, adding a Text or Range parameter named 'ClientId' to the Script would

allow the Custom Web Service to be tested in this way.

Page 16 of 58

Controlling the Response
Note that in the above example, the XML response has a root node of <ClientDetails>. This

is because we applied an XmlType attribute to the clsClientDetails class. Without this, the

root node will have been named <clsClientDetails>.

Also, because we have declared the Akas property as a List(Of String), we do not have any

control over how this is serialised. Using a custom collection would allow more control.

Our custom Web Service switches automatically between XML and JSON serialisation due to

the way we are returning the response as an object, i.e.:

Return request.CreateResponse(HttpStatusCode.OK, ClientDetails)

Alternatively, to return an error response:

Return request.CreateErrorResponse(ErrorStatusCode, "Failed to add Client.", ErrorCode,

finBL.Error.Message(True, True))

For most services, this is probably desirable but, using the various 'Create' methods of the

request object we can force the response to be a particular format as follows:

HTML Response

CreateHtmlResponse allows us to force the response to be HTML, e.g.

Return request.CreateHtmlResponse(HttpStatusCode.OK, "<h1>This is HTML</h1>")

This simply sets the HTTP Content-Type header to text/html.

JSON Response

CreateJsonResponse allows us to force the response to be JSON, e.g.

Return request.CreateJsonResponse(HttpStatusCode.OK, "{FirstName: "John", LastName: "Smith"}")

This simply sets the HTTP Content-Type header to application/json.

NOTE: See the Manually Creating JSON Text section for information on using the JsonBuilder

business layer object which was added in finPOWER Connect 2.03.00.

Text Response

CreateTextResponse allows us to force the response to be plain text, e.g.

Return request.CreateTextResponse(HttpStatusCode.OK, Account.AccountId)

This simply sets the HTTP Content-Type header to text/plain.

NOTE: If a Web Service is designed to return only a very simple value, e.g., the Id of an

Account, returning it as plain text means that any calling applications do not need to parse

XML or JSON and therefore simplifies the code.

XML Response

CreateXmlResponse allows us to force the response to be XML, e.g.

Return request.CreateXmlResponse(HttpStatusCode.OK, Branch.ToXmlString())

Page 17 of 58

This simply sets the HTTP Content-Type header to text/xml.

PDF Response

CreatePdfResponse and CreatePdfResponseFromHtml allows us to force the response to be

PDF document, e.g.

Return request.CreatePdfResponseFromHtml(HttpStatusCode.OK, "<h1>My PDF document</h1>")

Or:

Dim PdfData() As Byte

If finBL.PdfUtilities.CreatePdfByteArrayFromHtml("<h1>My PDF document</h1>", PdfData) Then

 Return request.CreatePdfResponse(HttpStatusCode.Ok, PdfData)

Else

 ' Error

End If

This sets the HTTP content to the binary PDF data and sets the Content-Type header to

application/pdf.

See the PDF Documents section for more information.

Docx Response

CreateDocxResponse allows us to force the response to be a Microsoft Word (docx) document,

e.g.

Dim DocxData() As Byte

' Populate DocxData, e.g., from the embedded file data on a finAccountLog

Return request.CreateDocxResponse(HttpStatusCode.Ok, DocxData)

This sets the HTTP content to the binary Docx data and sets the Content-Type header to

application/vnd.openxmlformats-officedocument.wordprocessingml.document.

NOTE: The content type above may seem long-winded but is the official MIME type specified

my Microsoft:

http://blogs.msdn.com/b/vsofficedeveloper/archive/2008/05/08/office-2007-open-xml-mime-

types.aspx

http://blogs.msdn.com/b/vsofficedeveloper/archive/2008/05/08/office-2007-open-xml-mime-types.aspx
http://blogs.msdn.com/b/vsofficedeveloper/archive/2008/05/08/office-2007-open-xml-mime-types.aspx

Page 18 of 58

Accepting Posted Data
Sometimes, you may wish to simply POST data directly to a custom Web Service, e.g., an XML

document created from an external application.

The following Script will accept a POSTed piece of XML in the following format and create a

Transaction for an Account. It will not return anything, just an HTTP Status code of 200 if

successful:

<AccountPayment>

 <AccountId>L10035</AccountId>

 <Amount>35.00</Amount>

 <Reference>REF</Reference>

</AccountPayment>

Update your custom Web Service's Script code to the following:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 Dim AccountPayment As finAccountPayment

 Dim AccountPaymentDetails As clsAccountPaymentDetails

 Dim Obj As Object

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Parse XML (use business layer helper Function)

 If finBL.Runtime.WebUtilities.DeserialiseXmlStringToObject(request.RequestText,

GetType(clsAccountPaymentDetails), Obj) Then

 AccountPaymentDetails = DirectCast(Obj, clsAccountPaymentDetails)

 Else

 Ok = False

 End If

 ' Add Account Payment

 If Ok Then

 AccountPayment = finBL.CreateAccountPayment()

 With AccountPayment

 ' Load Account

 Ok = .AccountLoad(AccountPaymentDetails.AccountId)

 ' Update

 If Ok Then

 .TransactionTypeId = "PAY"

 .PaymentMethodId = "CASHR"

 .PaymentValue = AccountPaymentDetails.Amount

 .TransactionReference = AccountPaymentDetails.Reference

 End If

 ' Commit

 If Ok Then

 Ok = .ExecuteCommit()

 End If

 End With

 End If

 ' Response

 If Ok Then

 Return request.CreateResponse(HttpStatusCode.OK)

 End If

 ' Error

 If Not Ok Then

 Return request.CreateErrorResponse(ErrorStatusCode, "Failed to make Account payment.",

ErrorCode, finBL.Error.Message(True, True))

 End If

End Function

<System.Xml.Serialization.XmlType("AccountPayment")>

Public Class clsAccountPaymentDetails

Page 19 of 58

 Public AccountId As String

 Public Amount As Decimal

 Public Reference As String

End Class

We will now test the updated service using the Test Web Service form.

• Select the Custom, Execute (POST) node in the Web Services explorer.

• Enter the Id of your Script, e.g., TESTWS

• In the Request Text field, past the XML shown at the start of this section.

• Click the Test button.

o You should receive a Response that contains nothing, just an HTTP Status code of 200.

NOTE: The Deserialising the Request and Parsing Posted XML Request sections cover handling

Posted data in more detail.

Page 20 of 58

Serialising the Response
As shown in some of the previous samples in this section, serialisation to either XML or JSON is

handled automatically by the Web API and the .NET framework.

This section has examples of automatic serialisation of the Response from Script objects.

WARNING: Never attempt to return built-in finPOWER Connect business layer objects from a

Custom Web Service. These objects are not designed for serialisation.

NOTE: Many of the examples in this section remove the following attributes from the

response's root XML node for clarity:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Page 21 of 58

Nullable Types

.NET nullable types are not used within the finPOWER Connect business layer however, they

can, and often should, be used when returning the results of a Web Service.

For instance if you attempt to return an object that has a Date property, e.g., DateOfBirth,

and this does not have a value, it will be returned as 0001-01-01T00:00:00 since the .NET

Date type cannot have no value (within .NET, the Date = Nothing assignment and comparison

is actually assigning and comparing the date with 0001-01-01T00:00:00).

For example, the following Script:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ClientDetails As ClientDetails

 ' Create Object

 ClientDetails = New ClientDetails()

 With ClientDetails

 .Name = "Paul"

 End With

 ' Return

 Return request.CreateResponse(HttpStatusCode.OK, ClientDetails)

End Function

Public Class ClientDetails

 Public Name As String

 Public DateOfBirth As Date

End Class

Returns:

<ClientDetails>

 <Name>Paul</Name>

 <DateOfBirth>0001-01-01T00:00:00</DateOfBirth>

</ClientDetails>

If this is modified to use a nullable data type, e.g.:

Public Class ClientDetails

 Public Name As String

 Public DateOfBirth As Date?

End Class

The response is much more intuitive:

<ClientDetails>

 <Name>Paul</Name>

 <DateOfBirth xsi:nil="true" />

</ClientDetails>

Nullable types would typically be used for the following:

• Dates

o Only where the date is optional, e.g., a Date of Birth.

• Numeric types, e.g., Decimal, Double and Integer

o Only where returning zero does not make sense.

• Boolean values

o Only where returning True or False does not make sense.

Page 22 of 58

NOTE: Strings cannot be nullable since the String data type in the .NET framework is an object

and only value types can be nullable.

WARNING: Returning nullable types does add an extra level of complexity to the application

having to parse the XML and you should consider not including the elements in the response at

all as described in the Preventing Properties From Being Serialised section.

Page 23 of 58

Dates

Dates are serialised using the ISO 8601 standard as detailed in the Dates section of the API

Reference.

All built-in Web Services return dates containing a time portion in UTC format, regardless of

how they are stored within finPOWER Connect.

Unless you have a requirement to explicitly ignore this rule, all dates containing a time portion

that are returned from a Custom Web Service, e.g., Log dates, should be returned as UTC

dates.

WARNING: .NET Dates have a Kind property which may affect how the date is serialised.

Therefore, when setting dates on objects that are to be serialised, it is important to bear this in

mind, e.g., if Kind is DateTimeKind.Local, serialising a date containing a time portion may

not produce the result you expect, e.g., the date may be converted to a UTC date when this is

not expected.

When testing a Custom Web Service, if dates and times are involved, ensure that you test the

service on a Web Server running in the time zone that the production server will be using to

ensure there are no unforeseen issues.

finPOWER Connect contains business layer functionality to convert a dates to nullable, UTC

format dates, e.g.:

' Create Object

ClientDetails = New ClientDetails()

With ClientDetails

 .Name = Client.Name

 .DateOfBirth = finBL.Runtime.DateUtilities.CastToNullableUtcDate(Client.DateOfBirth)

 If LastLog IsNot Nothing Then

 .LastLogDate = finBL.ToUniversalTime(LastLog.Date)

 End If

End With

Produces the following response:

<ClientDetails>

 <Name>Smith, John</Name>

 <DateOfBirth>1978-02-04T00:00:00Z</DateOfBirth>

 <LastLogDate>2014-08-07T03:26:11Z</LastLogDate>

</ClientDetails>

Note that both dates are returned as UTC dates even though the Date of Birth does not contain

a time portion.

The following helper functions are available in finPOWER Connect business layer:

• finBL.ToUniversalTime(value)

o Converts a date recorded in local time (as Log dates are in finPOWER Connect 2) to UTC

time.

o The time will be adjusted from local time to UTC time.

• finBL.Runtime.DateUtilities

o CastToNullableUtcDate(value)

 Casts a date containing no time portion (E.g., a Date of Birth) to a nullable UTC date.

 If the Date = Nothing then this will be handled correctly.

 Any time portion is removed.

o CastToNullableUtcDateTime(value)

 Casts a date, optionally containing a time portion to a nullable UTC date.

 If the Date = Nothing then this will be handled correctly.

Page 24 of 58

 Does not 'convert' the date to UTC, i.e., no time adjustment is made so this is not

suitable for converting local dates to UTC dates.

Page 25 of 58

Enums

Enums are serialised as String values, e.g., isefinAccountStatus.ClosedPending is

serialised to 'ClosedPending' using a method such as finAccount.Status.ToString().

finPOWER Connect generally has an Enum value, e.g., isefinAccountStatus.ClosedPending

and also a display value, e.g., 'Closed (Pending)'. This is not the same as the serialised version

of the Enum ('ClosedPending') although often the two are the same.

WARNING: Do not confuse the finPOWER Connect display value returned from methods such

as finBL.Enums.isefinAccountStatus_ToString() methods with the actual Enum values.

These methods are used for displaying Enum values in a user-readable form, e.g., including

spaces or varying the display value based upon the database country.

When returning an object that contains an Enum value, it may be desirable to return both the

Enum and the display value. Typically, the property holding the display value is named the

same as the Enum value property but with a 'Text' suffix, e.g.:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Account As finAccount

 Dim AccountDetails As AccountDetails

 ' Load (ignore errors for simplicity)

 Account = finBL.CreateAccount()

 Account.Load("L10000")

 ' Create Object

 AccountDetails = New AccountDetails()

 With AccountDetails

 .Name = Account.Name

 .Status = Account.Status

 .StatusText = Account.StatusText

 End With

 ' Return

 Return request.CreateResponse(HttpStatusCode.OK, AccountDetails)

End Function

Public Class AccountDetails

 Public Name As String

 Public Status As isefinAccountStatus

 Public StatusText As String

End Class

Produces the following response:

<AccountDetails>

 <Name>Smith, John</Name>

 <Status>ClosedPending</Status>

 <StatusText>Closed (Pending)</StatusText>

</AccountDetails>

Page 26 of 58

Using Attributes to Tweak Serialisation

You may wish to serialise classes using an XML element named differently from the class

name.

This is achieved by applying the XmlType or XmlRoot attributes to the class, e.g.:

<System.Xml.Serialization.XmlType("Transaction")>

Public Class finwsAccountTransaction

 ' Properties

 Public [Date] As Date

 Public ElementId As String

 Public Reference As String

 Public Value As Decimal

End Class

< System.Xml.Serialization.XmlRoot("Transactions")>

Public Class finwsAccountTransactions : Inherits List(Of finwsAccountTransaction)

End Class

< System.Xml.Serialization.XmlType("AvailableCredit")>

Public Class finwsAccountAvailableCreditDetails

 Public AvailableCredit1 As Decimal

 Public AvailableCredit2 As Decimal

 Public AvailableCredit3 As Decimal

 Public CreditLimit1 As Decimal

 Public CreditLimit2 As Decimal

 Public CreditLimit3 As Decimal

End Class

NOTE: Both of these attributes work in a similar way in that they determine the name of the

XML element containing their properties.

Page 27 of 58

Preventing Properties from Being Serialised

Sometimes, you may wish to define properties on your object but not have them serialised

under certain circumstances.

For example, you may have a ClientDetails class that contains properties that should only

be serialised for 'Individual' type Clients, e.g., DateOfBirth.

NOTE: These ShouldSerialize methods are applied when serialising as XML or JSON and are

built-in to the .NET framework.

The method MUST be named after the property name, e.g., to control whether a DateOfBirth

property is serialised, you must have a method named ShouldSerializeDateOfBirth() that

returns a Boolean value.

Also note the U.S. spelling of the word 'serialize'.

The following example shows how to achieve this using special ShouldSerialize methods

which are used by the .NET serialisation process to decide whether or not to serialise a

property:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Client As finClient

 Dim ClientDetails As ClientDetails

 ' Load (ignore errors for simplicity)

 Client = finBL.CreateClient()

 Client.Load("C10000")

 ' Create Object

 ClientDetails = New ClientDetails(Client)

 With ClientDetails

 .Name = Client.Name

 .DateOfBirth = finBL.Runtime.DateUtilities.CastToNullableUtcDate(Client.DateOfBirth)

 .OrganisationNumber = Client.OrganisationNumber

 End With

 ' Return

 Return request.CreateResponse(HttpStatusCode.OK, ClientDetails)

End Function

Public Class ClientDetails

 ' Properties

 Public Name As String

 Public DateOfBirth As Date?

 Public OrganisationNumber As String

 ' Other

 Private mClient As finClient

 Public Sub New(client As finClient)

 mClient = client

 End Sub

 Public Sub New()

 End Sub

 ' Prevent Serialisation for Not Applicable Properties

 Public Function ShouldSerializeDateOfBirth() As Boolean

 Return mClient Is Nothing OrElse mClient.IsIndividual OrElse mClient.IsSoleTrader

 End Function

 Public Function ShouldSerializeOrganisationNumber() As Boolean

 Return mClient Is Nothing OrElse mClient.IsOrganisation

 End Function

End Class

Page 28 of 58

Produces the following response for an 'Individual' Client:

<ClientDetails>

 <Name>Smith, John</Name>

 <DateOfBirth>1978-02-04T00:00:00Z</DateOfBirth>

</ClientDetails>

And the following response for an 'Organisation' Client:

<ClientDetails>

 <Name>Company Limited</Name>

 <OrganisationNumber>1234567890</OrganisationNumber>

</ClientDetails>

WARNING: Serialisable classes must always have an empty, public constructor which is why

the above example has two constructors.

This is also why the test mClient Is Nothing is performed since theoretically, a

ClientDetails object could be created without passing in a finClient object.

Page 29 of 58

Serialising Collections

All of the above examples have dealt with serialising a single-level object.

The following example shows how to return a collection object:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Account As finAccount

 Dim AccountTransaction As finAccountTransaction

 Dim AccountDetails As AccountDetails

 Dim Transaction As Transaction

 ' Load (ignore errors for simplicity)

 Account = finBL.CreateAccount()

 Account.Load("L10000")

 ' Create Object

 AccountDetails = New AccountDetails()

 With AccountDetails

 .AccountId = Account.AccountId

 .Name = Account.Name

 .Transactions = New List(Of Transaction)

 End With

 ' Add Transactions

 For Each AccountTransaction In Account.Transactions

 ' Create

 Transaction = New Transaction()

 ' Update

 With AccountTransaction

 Transaction.Date = finBL.Runtime.DateUtilities.CastToUtcDate(.Date)

 Transaction.ElementId = .ElementId

 Transaction.Value = .Value

 End With

 ' Add to Collection

 AccountDetails.Transactions.Add(Transaction)

 Next

 ' Return

 Return request.CreateResponse(HttpStatusCode.OK, AccountDetails)

End Function

Public Class AccountDetails

 Public AccountId As String

 Public Name As String

 Public Transactions As List(Of Transaction)

End Class

Public Class Transaction

 Public [Date] As Date

 Public ElementId As String

 Public Value As Decimal

End Class

Produces the following response:

<AccountDetails>

 <AccountId>L10000</AccountId>

 <Name>Smith, John</Name>

 <Transactions>

 <Transaction>

 <Date>2014-06-08T00:00:00Z</Date>

 <ElementId>ADV</ElementId>

 <Value>10000</Value>

 </Transaction>

 <Transaction>

 <Date>2014-06-09T00:00:00Z</Date>

 <ElementId>ACCF</ElementId>

 <Value>123</Value>

 </Transaction>

 <Transaction>

Page 30 of 58

 <Date>2014-07-09T00:00:00Z</Date>

 <ElementId>ACCF</ElementId>

 <Value>2.22</Value>

 </Transaction>

 <Transaction>

 <Date>2014-07-09T00:00:00Z</Date>

 <ElementId>PAY</ElementId>

 <Value>-4.22</Value>

 </Transaction>

 </Transactions>

</AccountDetails>

Page 31 of 58

Deserialising the Request
As shown in the Accepting Posted Data section, it is often desirable to deserialise XML or JSON

posted to the Custom Web Service into an object that the Script can use.

Deserialising XML

The finPOWER Connect business layer provides functionality to deserialise XML into an object

as shown in the following example:

WARNING: Deserialisation is useful for small, flat objects or simple collections. For complex

XML it may be more suitable to parse the posted XML directly.

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 Dim Client As finClient

 Dim ClientDetails As ClientDetails

 Dim Obj As Object

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Parse XML (use business layer helper Function)

 If finBL.Runtime.WebUtilities.DeserialiseXmlStringToObject(request.RequestText,

GetType(ClientDetails), Obj) Then

 ClientDetails = DirectCast(Obj, ClientDetails)

 Else

 Ok = False

 End If

 ' Add Client

 If Ok Then

 Client = finBL.CreateClient()

 With Client

 ' Update

 .FirstName = ClientDetails.FirstName

 .LastName = ClientDetails.LastName

 .DateOfBirth = ClientDetails.DateOfBirth

 ' Save

 Ok = .Save()

 End With

 End If

 ' Return Response

 If Ok Then

 Return request.CreateResponse(HttpStatusCode.OK, Client.ClientId)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode, "Failed to add Client.", ErrorCode,

finBL.Error.Message(True, True))

 End If

End Function

Public Class ClientDetails

 Public FirstName As String

 Public LastName As String

 Public DateOfBirth As Date

End Class

The following XML can be posted to the above Script:

<ClientDetails>

 <FirstName>Paul</FirstName>

 <LastName>Jones</LastName>

Page 32 of 58

 <DateOfBirth>1986-03-17</DateOfBirth>

</ClientDetails>

Points of note in the above example are:

• Use of the DeserialiseXmlStringToObject() helper method.

o Internally, this uses the .NET framework's deserialisation functionality.

• ClientDetails.DateOfBirth is defined as a date.

o This means that if the XML omits this tag, the property will remain as the default value

for a Date which equals Nothing, therefore there is no special handling required.

o This is a Date with no time portion hence there is no need to convert from a UTC date.

o Supplying an empty DateOfBirth element in the XML, e.g.:

<DateOfBirth/>

Will cause a deserialisation error. Either omit the element completely or use the following

format:

<ClientDetails xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <FirstName>Paul</FirstName>

 <LastName>Jones</LastName>

 <DateOfBirth xsi:nil="true" />

</ClientDetails>

And change the DateOfBirth property to a nullable type:

Public Class ClientDetails

 Public FirstName As String

 Public LastName As String

 Public DateOfBirth As Date?

End Class

And handle accordingly when updating the finClient object, e.g.:

If ClientDetails.DateOfBirth IsNot Nothing Then

 .DateOfBirth = CDate(ClientDetails.DateOfBirth)

End If

Page 33 of 58

Deserialising JSON

Deserialising JSON text passed to a custom Web Service is done in exactly the same way as

XML (as discussed in the previous section). The only difference is that the

DeserialiseJsonStringToObject method is used instead of the

DeserialiseXmlStringToObject method.

WARNING: Deserialisation is useful for small, flat objects or simple collections. For complex

XML it may be more suitable to parse the posted JSON directly.

Page 34 of 58

Testing Posted XML

Testing a Custom Web Service that accepts posted XML can be achieved from the Test Web

Services form.

Simply paste a sample of the XML into the 'Request Text' field, e.g.:

Page 35 of 58

Enums

Enums are included in XML using their String representation, e.g.,

isefinAccountStatus.ClosedPending would be serialised using a method such as

finAccount.Status.ToString(). This would produce a value of 'ClosedPending'.

WARNING: Do not confuse this with the finPOWER Connect display value for the Enum

returned from methods such as finBL.Enums.isefinAccountStatus_ToString() methods

with the actual Enum value.

These methods are used for displaying Enum values in a user-readable form, e.g., including

spaces or varying the display value based upon the database country.

Deserialisation of Enums is handed internally by the .NET framework however, it is not

recommended that you use nullable types for Enums since this complicates the deserialisation

process. Therefore, do not include an Enum tag in the XML if it is not required.

Page 36 of 58

Using Attributes to Tweak Deserialisation

By default, XML will be deserialised into properties that match the XML element names.

This can be tweaked using attributes, e.g.:

<System.Xml.Serialization.XmlType("TransactionBatch")>

Public Class clsTransactionBatch

 Public BatchId As String

 Public TransactionType As String

 Public Transactions As List(Of clsTransaction)

End Class

<System.Xml.Serialization.XmlType("Transaction")>

Public Class clsTransaction

 Public AccountId As String

 Public [Date] As Date

 Public Reference As String

 Public ElementId As String

 Public Value As Decimal

End Class

Page 37 of 58

Deserialising Collections

Collections can also be deserialied as shown in the following example which creates a Batch of

Transactions and saves and then commits the Batch:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Batch As finBatch

 Dim BatchTransaction As finBatchTransaction

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Obj As Object

 Dim Ok As Boolean

 Dim Transaction As clsTransaction

 Dim TransactionBatch As clsTransactionBatch

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Deserialise the XML to an Object

 If finBL.Runtime.WebUtilities.DeserialiseXmlStringToObject(request.RequestText,

GetType(clsTransactionBatch), Obj) Then

 TransactionBatch = DirectCast(Obj, clsTransactionBatch)

 Else

 Ok = False

 End If

 If Ok Then

 ' Initialise

 Batch = finBL.CreateBatch()

 ' Setup Batch

 With Batch

 .BatchId = TransactionBatch.BatchId

 .TransactionTypeId = TransactionBatch.TransactionType

 .SourceSet(isefinTransactionSource.ExternalA)

 End With

 ' Add Transactions

 For Each Transaction In TransactionBatch.Transactions

 ' Create

 BatchTransaction = Batch.Transactions.CreateBatchTransaction()

 ' Update (ignore errors for simplicity of sample)

 With BatchTransaction

 .AccountIdSet(Transaction.AccountId)

 .ElementIdSet(Transaction.ElementId)

 .Date = Transaction.Date

 .Value = Transaction.Value

 .Reference = Transaction.Reference

 End With

 ' Add

 Batch.Transactions.Add(BatchTransaction)

 Next

 ' Save Batch

 Ok = Batch.Save()

 ' Commit Batch

 If Ok Then

 Ok = Batch.ExecuteCommit(False)

 End If

 End If

 ' Return Response

 If Ok Then

 Return request.CreateResponse(HttpStatusCode.OK)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode, String.Format("Failed to execute custom Web

Service Script '{0}'.", ScriptInfo.ScriptId), ErrorCode, finBL.Error.Message(True, True))

 End If

End Function

<System.Xml.Serialization.XmlType("TransactionBatch")>

Public Class clsTransactionBatch

Page 38 of 58

 Public BatchId As String

 Public TransactionType As String

 Public Transactions As List(Of clsTransaction)

End Class

<System.Xml.Serialization.XmlType("Transaction")>

Public Class clsTransaction

 Public AccountId As String

 Public [Date] As Date

 Public Reference As String

 Public ElementId As String

 Public Value As Decimal

End Class

The following XML can be posted to the above Script:

<TransactionBatch>

 <BatchId>WSBatch001</BatchId>

 <TransactionType>PAY</TransactionType>

 <Transactions>

 <Transaction>

 <AccountId>L10000</AccountId>

 <Date>2014-08-07</Date>

 <Reference>Reference 1</Reference>

 <ElementId>PAY</ElementId>

 <Value>100.00</Value>

 </Transaction>

 <Transaction>

 <AccountId>L10035</AccountId>

 <Date>2014-08-08</Date>

 <Reference>Reference 2</Reference>

 <ElementId>PAY</ElementId>

 <Value>42.50</Value>

 </Transaction>

 </Transactions>

</TransactionBatch>

Points of note in the above example are:

• Use of the DeserialiseXmlStringToObject() helper method.

o Internally, this uses the .NET framework's deserialisation functionality.

o This deserialises the <Transactions> block in to the Transactions property which is

defined as a List(Of clsTransaction).

• Attributes (E.g., <System.Xml.Serialization.XmlType("Transaction")>) are used to

map the class names, e.g., clsTrasaction to an XML element name, e.g., Transaction.

Page 39 of 58

Troubleshooting Deserialisation Issues

Problems can arise when attempting to deserialise XML into an object and these are often hard

to track.

The DeserialiseXmlStringToObject() method will return False if deserialisation failed. This

may be due to the following:

• The XML being deserialised was invalid.

• Dates or numbers within the XML are invalid.

o E.g., Date values are not in the ISO 8601 format.

 ISO 8601: 2014-08-16

 Non-standard format: 8/16/2014

• Dates or numbers elements in the XML are empty.

o Even if the property on the object that the element is being serialised into is a nullable

type, including an empty element will still produce an error unless the xsi:nil="true"

attribute is applied as described in the 'Date of Birth' example at the end of the

Deserialising the Request section.

Additionally, if the property name in the object does not exactly match the XML element name

(this is case-sensitive), the property will not be populated during the deserialisation process.

Page 40 of 58

Parsing Posted XML Request
Parsing the posted XML request manually may be a better option than deserialising it if:

• The XML is complex, e.g., many levels of nesting.

• You want more control than the deserialisation process can provide, e.g.:

o The XML has different versions, e.g., a 'version' attribute on the root node affects how

the XML should be parsed.

o The XML contains dates not formatted according to the ISO 8601 standard.

 This may be the case if the supplied XML is in a legacy format of comes from a source

that you do not have control over.

The finPOWER Connect business layer has helper methods to assist in the parsing of XML.

The following example shows how to manually parse the XML used in Deserialising Collections

sample:

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Batch As finBatch

 Dim BatchTransaction As finBatchTransaction

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 Dim XmlDocument As XmlDocument

 Dim Node As XmlNode

 Dim Nodes As XmlNodeList

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Parse XML

 With finBL.Runtime.XmlUtilities

 ' Load XML Document

 If .LoadXmlDocumentFromString(request.RequestText, XmlDocument) Then

 ' Initialise

 Batch = finBL.CreateBatch()

 ' Get Root Node

 Node = XmlDocument.SelectSingleNode("TransactionBatch")

 If Node Is Nothing Then

 Ok = False

 finBL.Error.ErrorBegin("TransactionBatch node not found.")

 End If

 ' Setup Batch

 If Ok Then

 Batch.BatchId = .GetSubNodeString(Node, "BatchId")

 Batch.TransactionTypeId = .GetSubNodeString(Node, "TransactionType")

 Batch.SourceSet(isefinTransactionSource.ExternalA)

 End If

 ' Transactions

 If Ok Then

 Nodes = Node.SelectNodes("Transactions/Transaction")

 For Each Node In Nodes

 ' Create

 BatchTransaction = Batch.Transactions.CreateBatchTransaction()

 ' Update (ignore errors for simplicity of sample)

 BatchTransaction.AccountIdSet(.GetSubNodeString(Node, "AccountId"))

 BatchTransaction.ElementIdSet(.GetSubNodeString(Node, "ElementId"))

 BatchTransaction.Date = .GetSubNodeDate(Node, "Date")

 BatchTransaction.Value = .GetSubNodeDecimal(Node, "Value")

 BatchTransaction.Reference = .GetSubNodeString(Node, "Reference")

 ' Add

 Batch.Transactions.Add(BatchTransaction)

 Next

 End If

Page 41 of 58

 ' Save Batch

 If Ok Then

 Ok = Batch.Save()

 End If

 ' Commit Batch

 If Ok Then

 Ok = Batch.ExecuteCommit(False)

 End If

 Else

 Ok = False

 End If

 End With

 ' Return Response

 If Ok Then

 Return request.CreateResponse(HttpStatusCode.OK)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode, String.Format("Failed to execute custom Web

Service Script '{0}'.", ScriptInfo.ScriptId), ErrorCode, finBL.Error.Message(True, True))

 End If

End Function

Points of note in the above example are:

• Use of the finBL.Runtime.XmlUtilities helper methods to load and parse XML.

Page 42 of 58

Parsing Posted JSON Request
Parsing the posted JSON request manually may be a better option than deserialising it if:

• The JSON is complex, e.g., many levels of nesting.

• You want more control than the deserialisation process can provide, e.g.:

o The JSON contains dates not formatted according to the ISO 8601 standard.

 This may be the case if the supplied JSON is in a legacy format of comes from a

source that you do not have control over.

The finPOWER Connect business layer has helper methods to assist in the parsing of JSON.

NOTE: This functionality was added as at version 2.03.00 of finPOWER Connect.

The following example (a 'General' type Script, not a 'Custom Web Service' Script) shows how

to manually parse a JSON string:

Public Function Main(parameters As ISKeyValueList) As Boolean

 Dim i As Integer

 Dim JsonText As String

 Dim JsonToken As ISJsonToken

 Dim JsonTokenRoot As ISJsonToken

 Dim JsonTokens() As ISJsonToken

 ' Assume Success

 Main = True

 JsonText = "{""AccountId"":""L1000"",""Payments"":[{""Date"":""2015-05-

01T00:00:00"",""Reference"":""AP"",""Value"":120.0},{""Date"":""2015-06-

01T00:00:00"",""Reference"":""DD"",""Value"":125.0}]}"

 If finBL.Runtime.JsonUtilities.LoadJsonTokenFromString(JsonText, JsonTokenRoot) Then

 finBL.DebugPrint(String.Format("AccountId : {0}",

 JsonTokenRoot.GetPropertyString("AccountId")))

 JsonTokens = JsonTokenRoot.GetPropertyArray("Payments")

 For i = 0 To JsonTokens.Length - 1

 JsonToken = JsonTokens(i)

 finBL.DebugPrint("")

 finBL.DebugPrint(String.Format("Item {0}", i))

 finBL.DebugPrint(String.Format("Date : {0}",

 finBL.FormatDateLong(JsonToken.GetPropertyDate("Date"))))

 finBL.DebugPrint(String.Format("Reference : {0}", JsonToken.GetPropertyString("Reference")))

 finBL.DebugPrint(String.Format("Value : {0}", JsonToken.GetPropertyDecimal("Value")))

 Next

 Else

 Main = False

 End If

End Function

Points of note in the above example are:

• Use of the finBL.Runtime.JsonUtilities helper methods to load and parse JSON.

Page 43 of 58

Manually Creating JSON Text
Manually creating JSON may be necessary where a specific JSON format is required, e.g., a

format that cannot easily be replicated via automatic serialisation of the Response.

For example, consider the following JSON which would be difficult (or maybe even impossible)

to replicate via serialisation:

{

 "First_Item": {

 "product_name": "Product A",

 "0": {

 "type_of_loan": "Loan Type A",

 "options": [

 {

 "Principal_and_Interest": {

 "account_type_id": "VL",

 "name": "Variable Loan"

 }

 },

 {

 "Interest_Only": {

 "account_type_id": "IO",

 "name": "Interest Only"

 }

 }

],

 "terms": "1 year,2 years,3 years,4 years,5 years"

 }

 },

 "Second_Item": {

 "product_name": "Product B"

 }

}

This can be manually created using the JsonBuilder business layer object as per the following

example:

Dim JsonBuilder As ISJsonBuilder

Dim JsonText As String

JsonBuilder = finBL.Runtime.CreateJsonBuilder(True)

With JsonBuilder

 .ObjectBegin()

 .ObjectBegin("First_Item")

 .WritePropertyString("product_name", "Product A")

 .ObjectBegin("0")

 .WritePropertyString("type_of_loan", "Loan Type A")

 .ArrayBegin("options")

 .ObjectBegin()

 .ObjectBegin("Principal_and_Interest")

 .WritePropertyString("account_type_id", "VL")

 .WritePropertyString("name", "Variable Loan")

 .ObjectEnd("Principal_and_Interest")

 .ObjectEnd()

 .ObjectBegin()

 .ObjectBegin("Interest_Only")

 .WritePropertyString("account_type_id", "IO")

 .WritePropertyString("name", "Interest Only")

 .ObjectEnd("Interest_Only")

 .ObjectEnd()

 .ArrayEnd("options")

 .WritePropertyString("terms", "1 year,2 years,3 years,4 years,5 years")

 .ObjectEnd("0")

 .ObjectEnd("First_Item")

 .ObjectBegin("Second_Item)

 .WritePropertyString("product_name", "Product B")

 .ObjectEnd("Second_Item")

Page 44 of 58

 .ObjectEnd()

End With

JsonText = JsonBuilder.ToJsonString()

Page 45 of 58

Documents, Emails and SMS Messages
This section details creating documents, Emails and SMS messages from Custom Web

Services.

This includes both documents defined in the finPOWER Connect Documents library and also ad-

hoc documents, Emails and SMS messages generated on-the-fly.

Important
• It is generally advisable to record any document sent in a Log, e.g., an Account Log.

o The normal finPOWER Connect publishing process requires that, under normal

circumstances, documents defined in the Documents library are published from Logs.

o However, when sending Ad-Hoc documents, it is the responsibility of the Custom Web

Service to record details of the document sent.

 Generally this should be against a Log such as an Account Log.

• Never attempt to contact an external Web Service or server from within a database

transaction.

o Sending of SMS messages via a one of the built-in finPOWER Connect services will

enforce this.

o However, if sending an Email via SMTP (or some other external means), ensure that this

does not occur within a database transaction.

Limitations
The following limitations should be kept in mind when attempting to publish documents from

Custom Web Services:

• The Document Manager may be unavailable:

o The Document Manager is used to store documents, e.g., all documents relating to a

particular Account.

o Unless the Web Service hosting the finPOWER Connect Web Services can access the

Document Manager, e.g., if has been configured by a network administrator to access the

a Windows UNC path at which the physical files exist, Custom Web Services will be

unable to read or write files.

 This does not prevent the document content from being embedded in the Log as either

HTML or binary file data (e.g., a PDF document).

• This will obviously impact on the database size.

• Sending of SMS messages or Emails may require the network administrator to make

changes to the firewall to allow these requests to occur from the Web Server.

• finPOWER Connect uses an external component to convert HTML to a PDF document

therefore the formatting is outside of the control of Intersoft Systems.

Page 46 of 58

Documents
The finPOWER Connect database allows a library of Documents to be defined under Admin,

Documents.

NOTE: The next section, Ad-Hoc Documents, relates to creating documents not using the

built-in finPOWER Connect Documents library.

Documents can be of the following File Types:

• Word VBA

• Excel VBA

• Email

• SMS Message

• Script

• Log

• HTML

Creation of a Document (e.g., an Account Document) requires the following to be performed:

• Create a Log

o E.g., a finAccountLog object

• Configure the Log:

o Set properties, e.g.:

 The Account to link to

 Other mandatory information such as a subject

o Link the log to the required Document

o Save the Log

• Publish the Log

Of all the steps listed above, the final one, Publish the Log is the only part that needs to be

handled in a special manor from Custom Web Services.

Up until finPOWER Connect version 2.02.06, all Document Publishing occurred through the

finPOWER Connect User Interface. This meant that although you could create Document Logs

using the business layer, publishing of these Logs (e.g., sending the Email, running the Script

or generating the Word document) relied on finPOWER Connect being run on the desktop.

In version 2.02.06, the concept of 'Unattended Publishing' was introduced (although only for

Script-type Documents in that particular release, the other Document types were supported

from the version after this). This allows Documents to be published without relying on the

finPOWER Connect User Interface, e.g., from within a Custom Web Service Script.

The following types of Document can be published using 'Unattended Publishing' and are

therefore relevant to this section:

• Email

• SMS Message

• Script

• HTML

Logs are published individually using the Publish method of the Log object (e.g.,

finAccountLog.Publish). To publish a Log from as custom Web Service, you must specify

that an unattendedPublish parameter of True, e.g.:

Page 47 of 58

Dim AccountLog As finAccountLog

Dim Ok As Boolean

AccountLog = finBL.CreateAccountLog()

With AccountLog

 ' Load

 Ok = .Load(3375)

 ' Publish

 If Ok Then Ok = .Publish(isefinLogPublishType.Publish, True)

End With

WARING: The following will never be able to be published from Custom Web Services due to

their reliance on Microsoft Office:

 Word VBA

 Excel VBA

Page 48 of 58

Script-Type Documents

This section shows how to use a Script-type Document to create a PDF document.

The sample Custom Web Service Script does the following:

• Creates an Account Document Log based on the Script-type Document 'LDP.PDF'.

• Publishes this Log.

o This embeds the binary File Data within the Log.

• Streams the Log's embedded file data.

This sample relies on the following:

• The sample Loan Declaration of Purpose PDF Document existing in the database with a code

of 'LDP.PDF'.

o NOTE: This can be imported from the

Document_Loan_DeclarationOfPurpose_PDF.xml file found in the finPOWER

Connect /Template/Script Samples folder.

• The Document relies on having access to the Loan_DeclarationOfPurpose.docx Word

document.

o NOTE: The path of this document is defined as a constant at the top of the Document

Script (as opposed to the Custom Web Service Script). This file can be found in the

finPOWER Connect /Templates/Script Samples folder.

Option Explicit On

Option Strict On

' ###

' Create a Loan Declaration of Purpose PDF from LDP.PDF Document

'

' Version: 1.00 (13/04/2015)

'

' Usage: Custom Web Service

' ###

' Constants

Const DocumentId As String = "LDP.PDF"

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim AccountId As String

 Dim AccountLog As finAccountLog

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Get Parameters

 AccountId = request.Parameters.GetString("AccountId")

 ' Validate

 If Len(AccountId) = 0 Then

 Ok = False

 ErrorCode = "AccountId.Missing"

 finBL.Error.ErrorBegin("Account Id not specified.")

 End If

 ' Create Account Document Log

 If Ok Then

 AccountLog = finBL.CreateAccountLog()

 With AccountLog

 .AccountId = AccountId

 .Subject = "Loan Declaration of Purpose"

 .DocumentId = DocumentId

 ' Save

Page 49 of 58

 If Ok Then Ok = .Save()

 ' Publish (creates Embedded Document in Log)

 If Ok Then Ok = .Publish(isefinLogPublishType.Publish, True)

 ' Refresh Log (so Embedded Document is available)

 If Ok Then Ok = .Refresh()

 End With

 End If

 ' Return Response

 If Ok Then

 Return request.CreatePdfResponse(HttpStatusCode.OK, AccountLog.EmbeddedFileData)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode,

 String.Format("Failed to execute custom Web Service Script

'{0}'.", ScriptInfo.ScriptId),

 ErrorCode,

 finBL.Error.Message(True))

 End If

End Function

The following points should be noted from the above example:

• The sample 'LDP.PDF' Document creates and embeds a PDF file in the Account Log.

o If the Document instead embedded a Word Document (docx) in the Log, the above

example would need to be changed to either:

 Use the request.CreateDocxResponse method to return the binary file data.

 Use the ISWordDocument object to load the Account Log's embedded file data and get

it as an array of PDF bytes.

• The Account Log is published using the Publish method.

o A True parameter is passed in so that the publish can be performed from Web Services

(by default this is handled by the finPOWER Connect User Interface which is not available

from Custom Web Services).

o The Account Log must be refreshed after the Publish method has been called otherwise

the embedded file data will not be available.

NOTE: Although the sample Document specifies the Word document path as a constant, you

might wish to modify this code to pick it up from a fixed location if it is running under Web

Services. This would mean modifying the 'Get Constants' section of the LDP.PDF Document

e.g.:

If finBL.IsRunningFromWeb Then

 TemplateFilename = "c:\webserver\Loan_DeclarationOfPurpose.docx"

End If

Page 50 of 58

Ad-Hoc Documents
This section shows examples of creating Ad-Hoc documents, i.e., document such as PDFs,

Word, Emails and SMS messages that do not relate to the finPOWER Connect Documents

library.

finPOWER Connect contains the following functionality that is useful for creating both Word and

PDF documents:

• The ISWordDocument object that can be used to create a Word document (without Microsoft

Word) and save as either Docx or PDF format.

• The ability to convert HTML into a PDF document.

Page 51 of 58

Word Document stored in an Account Log and returned as PDF

This section shows how to create a Word document (docx) using the ISWordDocument business

layer object.

The sample Custom Web Service Script does the following:

• Creates a Word document using the ISWordDocument functionality.

• Creates an Account Log and attaches this document to the Account Log.

o NOTE: At this point, it is possible to attach the document as a PDF file. However, storing

it within the Log as a Word document has some advantages, e.g., the ability to easily

print the Document from the Account Log form.

• Streams the generated Word Document as a PDF file.

This sample relies on the following:

• The Web Service having access to the Loan_DeclarationOfPurpose.docx Word

document.

o NOTE: The path of this document is defined as a constant at the top of the Script. This

file can be found in the finPOWER Connect /Templates/Script Samples folder.

Option Explicit On

Option Strict On

' ###

' Create a Loan Declaration of Purpose PDF with Account Log

'

' Version: 1.00 (13/04/2015)

'

' Usage: Custom Web Service

' ###

' Constants

Const WordTemplateFileName As String = "c:\test\Loan_DeclarationOfPurpose.docx"

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Account As finAccount

 Dim AccountId As String

 Dim AccountLog As finAccountLog

 Dim Bookmark As ISWordDocumentBookmark

 Dim Bookmarks As ISWordDocumentBookmarks

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim FileDataDocX As Byte()

 Dim FileDataPdf As Byte()

 Dim Ok As Boolean

 Dim WordDocument As ISWordDocument

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Get Parameters

 AccountId = request.Parameters.GetString("AccountId")

 ' Validate

 If Len(AccountId) = 0 Then

 Ok = False

 ErrorCode = "AccountId.Missing"

 finBL.Error.ErrorBegin("Account Id not specified.")

 End If

 ' Load Account

 If Ok Then

 Account = finBL.CreateAccount()

 Ok = Account.Load(AccountId)

 End If

 ' Create Word Document

 If Ok Then

Page 52 of 58

 WordDocument = finBL.CreateWordDocument()

 With WordDocument

 ' Load Word Document

 Ok = .Open(WordTemplateFileName)

 ' Replace Bookmarks

 If Ok Then

 ' Get Bookmarks

 Bookmarks = WordDocument.GetBookmarks()

 ' Update (just a small subset for example)

 For Each Bookmark In Bookmarks

 Select Case UCase(Bookmark.Table)

 Case "ACCOUNT"

 ' Account Table

 Select Case UCase(Bookmark.TableField)

 Case "ACCOUNTID"

 Bookmark.ContentNew = Account.AccountId

 Case "NAME"

 Bookmark.ContentNew = Account.Name

 End Select

 End Select

 Next

 ' Update Bookmarks

 WordDocument.UpdateBookmarks(Bookmarks)

 End If

 ' Get binary File Data (as Docx for Log and PDF to send back from this Web Service)

 If Ok Then Ok = .SaveDocXToByteArray(FileDataDocX)

 If Ok Then Ok = .SavePdfToByteArray(FileDataPdf)

 End With

 End If

 ' Create Account Log

 If Ok Then

 AccountLog = finBL.CreateAccountLog()

 With AccountLog

 .AccountPk = Account.Pk

 .Subject = "Loan Declaration of Purpose"

 ' Embed Word Document

 Ok = .EmbeddedFileSetFromByteArray(isefinLogEmbeddedFileType.Docx, FileDataDocx,

 finBL.Runtime.FileUtilities.GetFileName(WordTemplateFileName))

 ' Save

 If Ok Then Ok = .Save()

 End With

 End If

 ' Return Response

 If Ok Then

 ' Even though a Word File has been produced, we can get it as PDF to stream back

 Return request.CreatePdfResponse(HttpStatusCode.OK, FileDataPdf)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode,

 String.Format("Failed to execute custom Web Service Script

'{0}'.", ScriptInfo.ScriptId),

 ErrorCode,

 finBL.Error.Message(True))

 End If

End Function

NOTE: The bookmark replacement code in the above example is taken from the sample

Document, Document_Loan_DeclarationOfPurpose_PDF.xml, found in the finPOWER

Connect /Templates/Script Samples folder.

Page 53 of 58

Word Document returned as PDF

This example is the same as the previous one but bypasses creating an Account Log and

simply streams the PDF file back to the caller.

Option Explicit On

Option Strict On

' ###

' Create a Loan Declaration of Purpose PDF

'

' Version: 1.00 (13/04/2015)

'

' Usage: Custom Web Service

' ###

' Constants

Const WordTemplateFileName As String = "c:\test\Loan_DeclarationOfPurpose.docx"

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim Account As finAccount

 Dim AccountId As String

 Dim Bookmark As ISWordDocumentBookmark

 Dim Bookmarks As ISWordDocumentBookmarks

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim FileDataPdf As Byte()

 Dim Ok As Boolean

 Dim WordDocument As ISWordDocument

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Get Parameters

 AccountId = request.Parameters.GetString("AccountId")

 ' Validate

 If Len(AccountId) = 0 Then

 Ok = False

 ErrorCode = "AccountId.Missing"

 finBL.Error.ErrorBegin("Account Id not specified.")

 End If

 ' Load Account

 If Ok Then

 Account = finBL.CreateAccount()

 Ok = Account.Load(AccountId)

 End If

 ' Create Word Document

 If Ok Then

 WordDocument = finBL.CreateWordDocument()

 With WordDocument

 ' Load Word Document

 Ok = .Open(WordTemplateFileName)

 ' Replace Bookmarks

 If Ok Then

 ' Get Bookmarks

 Bookmarks = WordDocument.GetBookmarks()

 ' Update (just a small subset for example)

 For Each Bookmark In Bookmarks

 Select Case UCase(Bookmark.Table)

 Case "ACCOUNT"

 ' Account Table

 Select Case UCase(Bookmark.TableField)

 Case "ACCOUNTID"

 Bookmark.ContentNew = Account.AccountId

 Case "NAME"

 Bookmark.ContentNew = Account.Name

 End Select

 End Select

 Next

Page 54 of 58

 ' Update Bookmarks

 WordDocument.UpdateBookmarks(Bookmarks)

 End If

 ' Get binary File Data (as PDF to send back from this Web Service)

 If Ok Then Ok = .SavePdfToByteArray(FileDataPdf)

 End With

 End If

 ' Return Response

 If Ok Then

 ' Even though a Word File has been produced, we can get it as PDF to stream back

 Return request.CreatePdfResponse(HttpStatusCode.OK, FileDataPdf)

 Else

 Return request.CreateErrorResponse(ErrorStatusCode,

 String.Format("Failed to execute custom Web Service Script

'{0}'.", ScriptInfo.ScriptId),

 ErrorCode,

 finBL.Error.Message(True))

 End If

End Function

Page 55 of 58

PDF Document from HTML

Custom Web Services can return a Response representing a PDF document using either the

request.CreatePdfResponseFromHtml or request.CreatePdfResponse methods.

The following example returns a simple PDF document:

Option Explicit On

Option Strict On

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Return Response

 If Ok Then

 Return request.CreatePdfResponseFromHtml(HttpStatusCode.OK, "<h1>My PDF document</h1>.")

 Else

 Return request.CreateErrorResponse(ErrorStatusCode, String.Format("Failed to execute custom Web

Service Script '{0}'.", ScriptInfo.ScriptId), ErrorCode, finBL.Error.Message())

 End If

End Function

This returns the PDF file content as binary data. The following is a sample response with the

majority of the HTTP body stripped out since it is meaningless:

HTTP/1.1 200 OK

Content-Length: 2401

Content-Type: application/pdf

Date: Wed, 04 Jun 2014 00:29:48 GMT

Expires: -1

Server: Microsoft-IIS/8.0

X-AspNet-Version: 4.0.30319

X-Powered-By: ASP.NET

%PDF-1.5

%����
%Created by EVO PDF Tools v3.5

Note that the Content Type header specifies application/pdf.

A consumer of this Web Service could then retrieve the response data as an array of bytes and

either write it to a file or stream it to the user's Web browser.

Page 56 of 58

PDF Document from HTML, Base-64 Encoded in Complex Response

In the previous section, a custom Web Service was used to return a PDF document. The

response from the custom Web Service was a complete PDF document and contained no other

information.

In certain situations, it may be desirable to return the PDF document as part of a more

complex response, e.g., an XML response containing a <PdfDocument> node.

The following example returns a response containing Base 64 encoded PDF data. This can then

be decoded by the Web Service consumer and written to a PDF file:

Option Explicit On

Option Strict On

Public Function Main(request As finwsHttpRequest) As finwsHttpResponse

 Dim ErrorCode As String

 Dim ErrorStatusCode As HttpStatusCode

 Dim Ok As Boolean

 Dim PdfDetails As PdfDetails

 Dim PdfDocumentBase64 As String

 ' Assume Success

 Ok = True

 ' Initialise

 ErrorStatusCode = HttpStatusCode.BadRequest

 ' Create PDF Document from HTML

 Ok = finBL.PdfUtilities.CreatePdfBase64StringFromHtml("<h1>My PDF Document</h1>",

PdfDocumentBase64)

 ' Create PDF Details

 If Ok Then

 PdfDetails = New PdfDetails()

 With PdfDetails

 .Title = "PDF Title"

 .PdfDocument = PdfDocumentBase64

 End With

 End If

 ' Return Response

 If Ok Then

 ' Return PDF Details

 Return request.CreateResponse(HttpStatusCode.OK, PdfDetails)

 Else

 ' Error

 Return request.CreateErrorResponse(ErrorStatusCode, String.Format("Failed to execute custom Web

Service Script '{0}'.", ScriptInfo.ScriptId), ErrorCode, finBL.Error.Message())

 End If

End Function

Public Class PdfDetails

 Public Title As String

 Public PdfDocument As String

End Class

Since this Script returns an object (PdfDetails), it will automatically be serialised as either XML

or JSON as per the following (stripped down) responses:

<PdfDetails>

<Title>PDF Title</Title>

<PdfDocument>JVBERi0xLjUNCiWxsrO0DQolQ3JlYXRlZCBieSBFVk8gUERGIFRvb2xzIHYzLjUNCjEgMCBvYmoNCjw8DQovUGF

nZXMgMiAwIFINCi9QYWdlTGF5b3V0IC9PbmVDb2x1bW4NCi9QYWdlTW9kZSAvVXNlTm9uZQ0KL1ZpZXdlclByZWZlcmVuY2VzIDM

gMCBSDQovVHlwZSAvQ2F0YWxvZw0KPj4NCg0KZW5kb2JqDQo2IDAgb2JqDQo8PA0KL0ZpbHRlciAvRmxhdGVEZWNvZGUNCi9MZW5

ndGggMTMzDQo+Pg0Kc3RyZWFt</PdfDocument>

</PdfDetails>

{"Title":"PDF Title",

"PdfDocument":"JVBERi0xLjUNCiWxsrO0DQolQ3JlYXRlZCBieSBFVk8gUERGIFRvb2xzIHYzLjUNCjEgMCBvYmoNCjw8DQovU

GFnZXMgMiAwIFINCi9QYWdlTGF5b3V0IC9PbmVDb2x1bW4NCi9QYWdlTW9kZSAvVXNlTm9uZQ0KL1ZpZXdlclByZWZlcmVuY2VzI

Page 57 of 58

DMgMCBSDQovVHlwZSAvQ2F0YWxvZw0KPj4NCg0KZW5kb2JqDQo2IDAgb2JqDQo8PA0KL0ZpbHRlciAvRmxhdGVEZWNvZGUNCi9MZ

W5ndGggMTMyDQo+Pg0Kc3RyZWFt"}

Page 58 of 58

Appendix A – Guidelines

Formatting HTML for Generating a PDF Document
finPOWER Connect contains functionality to convert HTML into a PDF via the finBL.PdfUtilities

class.

When creating PDF documents from HTML, note the following:

• The PDF file is generated on the Web Server on which the Web Services are running and

can therefore only access any fonts available on this Server.

o You may wish to use safe fonts such as:

 Arial

 Times New Roman

 Verdana

• Any images you wish to include in the PDF, e.g., company logos should be referenced via a

URL that can be resolved by the Web Server.

• You do not have the same amount of control over the document that is produced as you

would using a Word processing package such as Microsoft Word.

• By default, the HTML is formatted as if displayed in a browser window that is 1024 pixels

wide.

o This can be changed via the ViewportWidth meta tag detailed below.

The following meta tags can be included at the top of the HTML to tweak that PDF file that is

produced:

<meta name='pdf-PageSize' content='A4'/>

<meta name='pdf-PageOrientation' content='Portrait'/>

<meta name='pdf-LeftMargin' content='1.5cm'/>

<meta name='pdf-RightMargin' content='1cm'/>

<meta name='pdf-TopMargin' content='1.5cm'/>

<meta name='pdf-BottomMargin' content='2.54cm'/>

<meta name='pdf-ViewportWidth' content='1200'/>

• PageSize

o One of the following: A4, A5, Legal, Letter

• PageOrientation

o Either Portrait or Landscape

• LeftMargin, RightMargin, TopMargin, BottomMargin

o Can be specified in the following units: cm, inches (if omitted, points are assumed)

• ViewportWidth

o This defaults to 1024 but specifying a different value will vary how the PDF is generated,

e.g., how much information fits on a line.

 By changing this value, the HTML text may scale to a different size so for consistency,

it may be best to not set the ViewportWidth but to change the font size in the HTML

using CSS.

	finPOWER Connect 3 Custom Web Services Programming Guide
	Table of Contents
	Disclaimer
	Version History
	Introduction
	Overview
	Dates
	Returning Dates from Custom Web Services
	JavaScript
	JavaScript Issues
	Parsing JSON Objects
	Serialising to a JSON Object

	Creating a Custom Web Service Script
	Calling the Custom Web Service
	Testing the Custom Web Service
	Debugging the Custom Web Service
	Accepting Parameters
	Controlling the Response
	HTML Response
	JSON Response
	Text Response
	XML Response
	PDF Response
	Docx Response

	Accepting Posted Data
	Serialising the Response
	Nullable Types
	Dates
	Enums
	Using Attributes to Tweak Serialisation
	Preventing Properties from Being Serialised
	Serialising Collections

	Deserialising the Request
	Deserialising XML
	Deserialising JSON
	Testing Posted XML
	Enums
	Using Attributes to Tweak Deserialisation
	Deserialising Collections
	Troubleshooting Deserialisation Issues

	Parsing Posted XML Request
	Parsing Posted JSON Request
	Manually Creating JSON Text

	Documents, Emails and SMS Messages
	Important
	Limitations
	Documents
	Script-Type Documents

	Ad-Hoc Documents
	Word Document stored in an Account Log and returned as PDF
	Word Document returned as PDF
	PDF Document from HTML
	PDF Document from HTML, Base-64 Encoded in Complex Response

	Appendix A – Guidelines
	Formatting HTML for Generating a PDF Document

